File size: 13,147 Bytes
a71406a
 
4ba09fa
 
 
 
 
 
 
a71406a
4ba09fa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a71406a
 
 
 
4ba09fa
 
 
 
 
 
 
 
 
 
 
 
a71406a
 
 
 
 
 
 
4ba09fa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a71406a
4ba09fa
 
 
 
 
 
a71406a
4ba09fa
a71406a
4ba09fa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a71406a
4ba09fa
 
 
a71406a
4ba09fa
 
 
 
 
 
 
a71406a
4ba09fa
 
 
 
a71406a
 
 
 
 
 
 
 
 
 
4ba09fa
a71406a
4ba09fa
 
 
 
 
a71406a
4ba09fa
 
 
 
 
 
 
 
 
 
 
 
a71406a
 
 
 
 
 
 
 
 
 
4ba09fa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a71406a
4ba09fa
 
 
 
 
 
 
 
 
a71406a
 
4ba09fa
 
 
 
 
 
 
 
a71406a
 
 
 
 
4ba09fa
 
 
 
 
 
 
a71406a
 
 
4ba09fa
a71406a
 
4ba09fa
 
 
 
 
 
 
 
 
 
 
 
a71406a
4ba09fa
 
 
 
 
 
a71406a
 
 
4ba09fa
 
 
 
 
 
 
 
 
a71406a
 
 
 
4ba09fa
 
 
 
 
 
 
a71406a
4ba09fa
 
a71406a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
import os
# os.system('pip install v0.1.0-alpha2.tar.gz')
import gradio as gr

import argparse
import copy

import numpy as np
import torch
import torchvision
from PIL import Image, ImageDraw, ImageFont

# Grounding DINO
import GroundingDINO.groundingdino.datasets.transforms as T
from GroundingDINO.groundingdino.models import build_model
from GroundingDINO.groundingdino.util import box_ops
from GroundingDINO.groundingdino.util.slconfig import SLConfig
from GroundingDINO.groundingdino.util.utils import clean_state_dict, get_phrases_from_posmap

# segment anything
from segment_anything import build_sam, SamPredictor 
import cv2
import numpy as np
import matplotlib.pyplot as plt


# diffusers
import PIL
import requests
import torch
from io import BytesIO
from diffusers import StableDiffusionInpaintPipeline
from huggingface_hub import hf_hub_download

# BLIP
from transformers import BlipProcessor, BlipForConditionalGeneration


def load_model_hf(model_config_path, repo_id, filename, device='cpu'):
    args = SLConfig.fromfile(model_config_path) 
    model = build_model(args)
    args.device = device

    cache_file = hf_hub_download(repo_id=repo_id, filename=filename)
    checkpoint = torch.load(cache_file, map_location='cpu')
    log = model.load_state_dict(clean_state_dict(checkpoint['model']), strict=False)
    print("Model loaded from {} \n => {}".format(cache_file, log))
    _ = model.eval()
    return model    

def generate_caption(processor, blip_model, raw_image):
    # unconditional image captioning
    inputs = processor(raw_image, return_tensors="pt").to("cuda", torch.float16)
    out = blip_model.generate(**inputs)
    caption = processor.decode(out[0], skip_special_tokens=True)
    return caption

def plot_boxes_to_image(image_pil, tgt):
    H, W = tgt["size"]
    boxes = tgt["boxes"]
    labels = tgt["labels"]
    assert len(boxes) == len(labels), "boxes and labels must have same length"

    draw = ImageDraw.Draw(image_pil)
    mask = Image.new("L", image_pil.size, 0)
    mask_draw = ImageDraw.Draw(mask)

    # draw boxes and masks
    for box, label in zip(boxes, labels):
        # from 0..1 to 0..W, 0..H
        box = box * torch.Tensor([W, H, W, H])
        # from xywh to xyxy
        box[:2] -= box[2:] / 2
        box[2:] += box[:2]
        # random color
        color = tuple(np.random.randint(0, 255, size=3).tolist())
        # draw
        x0, y0, x1, y1 = box
        x0, y0, x1, y1 = int(x0), int(y0), int(x1), int(y1)

        draw.rectangle([x0, y0, x1, y1], outline=color, width=6)
        # draw.text((x0, y0), str(label), fill=color)

        font = ImageFont.load_default()
        if hasattr(font, "getbbox"):
            bbox = draw.textbbox((x0, y0), str(label), font)
        else:
            w, h = draw.textsize(str(label), font)
            bbox = (x0, y0, w + x0, y0 + h)
        # bbox = draw.textbbox((x0, y0), str(label))
        draw.rectangle(bbox, fill=color)
        draw.text((x0, y0), str(label), fill="white")

        mask_draw.rectangle([x0, y0, x1, y1], fill=255, width=6)

    return image_pil, mask

def load_image(image_path):
    # # load image
    # image_pil = Image.open(image_path).convert("RGB")  # load image
    image_pil = image_path

    transform = T.Compose(
        [
            T.RandomResize([800], max_size=1333),
            T.ToTensor(),
            T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
        ]
    )
    image, _ = transform(image_pil, None)  # 3, h, w
    return image_pil, image


def load_model(model_config_path, model_checkpoint_path, device):
    args = SLConfig.fromfile(model_config_path)
    args.device = device
    model = build_model(args)
    checkpoint = torch.load(model_checkpoint_path, map_location="cpu")
    load_res = model.load_state_dict(clean_state_dict(checkpoint["model"]), strict=False)
    print(load_res)
    _ = model.eval()
    return model


def get_grounding_output(model, image, caption, box_threshold, text_threshold, with_logits=True, device="cpu"):
    caption = caption.lower()
    caption = caption.strip()
    if not caption.endswith("."):
        caption = caption + "."
    model = model.to(device)
    image = image.to(device)
    with torch.no_grad():
        outputs = model(image[None], captions=[caption])
    logits = outputs["pred_logits"].cpu().sigmoid()[0]  # (nq, 256)
    boxes = outputs["pred_boxes"].cpu()[0]  # (nq, 4)
    logits.shape[0]

    # filter output
    logits_filt = logits.clone()
    boxes_filt = boxes.clone()
    filt_mask = logits_filt.max(dim=1)[0] > box_threshold
    logits_filt = logits_filt[filt_mask]  # num_filt, 256
    boxes_filt = boxes_filt[filt_mask]  # num_filt, 4
    logits_filt.shape[0]

    # get phrase
    tokenlizer = model.tokenizer
    tokenized = tokenlizer(caption)
    # build pred
    pred_phrases = []
    scores = []
    for logit, box in zip(logits_filt, boxes_filt):
        pred_phrase = get_phrases_from_posmap(logit > text_threshold, tokenized, tokenlizer)
        if with_logits:
            pred_phrases.append(pred_phrase + f"({str(logit.max().item())[:4]})")
        else:
            pred_phrases.append(pred_phrase)
        scores.append(logit.max().item())

    return boxes_filt, torch.Tensor(scores), pred_phrases

def show_mask(mask, ax, random_color=False):
    if random_color:
        color = np.concatenate([np.random.random(3), np.array([0.6])], axis=0)
    else:
        color = np.array([30/255, 144/255, 255/255, 0.6])
    h, w = mask.shape[-2:]
    mask_image = mask.reshape(h, w, 1) * color.reshape(1, 1, -1)
    ax.imshow(mask_image)


def show_box(box, ax, label):
    x0, y0 = box[0], box[1]
    w, h = box[2] - box[0], box[3] - box[1]
    ax.add_patch(plt.Rectangle((x0, y0), w, h, edgecolor='green', facecolor=(0,0,0,0), lw=2)) 
    ax.text(x0, y0, label)


config_file = 'GroundingDINO/groundingdino/config/GroundingDINO_SwinT_OGC.py'
ckpt_repo_id = "ShilongLiu/GroundingDINO"
ckpt_filenmae = "groundingdino_swint_ogc.pth"
sam_checkpoint='sam_vit_h_4b8939.pth' 
output_dir="outputs"
device="cuda"

def run_grounded_sam(image_path, text_prompt, task_type, inpaint_prompt, box_threshold, text_threshold, iou_threshold, inpaint_mode):

    # make dir
    os.makedirs(output_dir, exist_ok=True)
    # load image
    image_pil, image = load_image(image_path.convert("RGB"))
    # load model
    model = load_model_hf(config_file, ckpt_repo_id, ckpt_filenmae)
    # model = load_model(config_file, ckpt_filenmae, device=device)

    # visualize raw image
    image_pil.save(os.path.join(output_dir, "raw_image.jpg"))

    if task_type == 'automatic':
        # generate caption and tags
        # use Tag2Text can generate better captions
        # https://huggingface.co/spaces/xinyu1205/Tag2Text
        # but there are some bugs...
        processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-large")
        blip_model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-large", torch_dtype=torch.float16).to("cuda")
        text_prompt = generate_caption(processor, blip_model, image_pil)
        print(f"Caption: {text_prompt}")

    # run grounding dino model
    boxes_filt, scores, pred_phrases = get_grounding_output(
        model, image, text_prompt, box_threshold, text_threshold, device=device
    )

    size = image_pil.size

    if task_type == 'seg' or task_type == 'inpainting' or task_type == 'automatic':
        # initialize SAM
        predictor = SamPredictor(build_sam(checkpoint=sam_checkpoint))
        image = np.array(image_path)
        predictor.set_image(image)

        H, W = size[1], size[0]
        for i in range(boxes_filt.size(0)):
            boxes_filt[i] = boxes_filt[i] * torch.Tensor([W, H, W, H])
            boxes_filt[i][:2] -= boxes_filt[i][2:] / 2
            boxes_filt[i][2:] += boxes_filt[i][:2]

        boxes_filt = boxes_filt.cpu()

        if task_type == 'automatic':
            # use NMS to handle overlapped boxes
            print(f"Before NMS: {boxes_filt.shape[0]} boxes")
            nms_idx = torchvision.ops.nms(boxes_filt, scores, iou_threshold).numpy().tolist()
            boxes_filt = boxes_filt[nms_idx]
            pred_phrases = [pred_phrases[idx] for idx in nms_idx]
            print(f"After NMS: {boxes_filt.shape[0]} boxes")
            print(f"Revise caption with number: {text_prompt}")

        transformed_boxes = predictor.transform.apply_boxes_torch(boxes_filt, image.shape[:2])

        masks, _, _ = predictor.predict_torch(
            point_coords = None,
            point_labels = None,
            boxes = transformed_boxes,
            multimask_output = False,
        )

        # masks: [1, 1, 512, 512]

    if task_type == 'det':
        pred_dict = {
            "boxes": boxes_filt,
            "size": [size[1], size[0]],  # H,W
            "labels": pred_phrases,
        }
        # import ipdb; ipdb.set_trace()
        image_with_box = plot_boxes_to_image(image_pil, pred_dict)[0]
        image_path = os.path.join(output_dir, "grounding_dino_output.jpg")
        image_with_box.save(image_path)
        image_result = cv2.cvtColor(cv2.imread(image_path), cv2.COLOR_BGR2RGB)
        return image_result
    elif task_type == 'seg' or task_type == 'automatic':
        assert sam_checkpoint, 'sam_checkpoint is not found!'

        # draw output image
        plt.figure(figsize=(10, 10))
        plt.imshow(image)
        for mask in masks:
            show_mask(mask.cpu().numpy(), plt.gca(), random_color=True)
        for box, label in zip(boxes_filt, pred_phrases):
            show_box(box.numpy(), plt.gca(), label)
        if task_type == 'automatic':
            plt.title(text_prompt)
        plt.axis('off')
        image_path = os.path.join(output_dir, "grounding_dino_output.jpg")
        plt.savefig(image_path, bbox_inches="tight")
        image_result = cv2.cvtColor(cv2.imread(image_path), cv2.COLOR_BGR2RGB)
        return image_result
    elif task_type == 'inpainting':
        assert inpaint_prompt, 'inpaint_prompt is not found!'
        # inpainting pipeline
        if inpaint_mode == 'merge':
            masks = torch.sum(masks, dim=0).unsqueeze(0)
            masks = torch.where(masks > 0, True, False)
        else:
            mask = masks[0][0].cpu().numpy() # simply choose the first mask, which will be refine in the future release
        mask_pil = Image.fromarray(mask)
        
        pipe = StableDiffusionInpaintPipeline.from_pretrained(
        "runwayml/stable-diffusion-inpainting", torch_dtype=torch.float16
        )
        pipe = pipe.to("cuda")

        image_pil = image_pil.resize((512, 512))
        mask_pil = mask_pil.resize((512, 512))

        image = pipe(prompt=inpaint_prompt, image=image_pil, mask_image=mask_pil).images[0]
        image = image.resize(size)

        image_path = os.path.join(output_dir, "grounded_sam_inpainting_output.jpg")
        image.save(image_path)
        image_result = cv2.cvtColor(cv2.imread(image_path), cv2.COLOR_BGR2RGB)
        return image_result
    else:
        print("task_type:{} error!".format(task_type))

if __name__ == "__main__":

    parser = argparse.ArgumentParser("Grounded SAM demo", add_help=True)
    parser.add_argument("--debug", action="store_true", help="using debug mode")
    parser.add_argument("--share", action="store_true", help="share the app")
    parser.add_argument('--port', type=int, default=7589, help='port to run the server')
    args = parser.parse_args()

    block = gr.Blocks().queue()
    with block:
        with gr.Row():
            with gr.Column():
                input_image = gr.Image(source='upload', type="pil", value="assets/demo1.jpg")
                task_type = gr.Dropdown(["det", "seg", "inpainting", "automatic"], value="automatic", label="task_type")
                text_prompt = gr.Textbox(label="Text Prompt")
                inpaint_prompt = gr.Textbox(label="Inpaint Prompt")
                run_button = gr.Button(label="Run")
                with gr.Accordion("Advanced options", open=False):
                    box_threshold = gr.Slider(
                        label="Box Threshold", minimum=0.0, maximum=1.0, value=0.3, step=0.001
                    )
                    text_threshold = gr.Slider(
                        label="Text Threshold", minimum=0.0, maximum=1.0, value=0.25, step=0.001
                    )
                    iou_threshold = gr.Slider(
                        label="IOU Threshold", minimum=0.0, maximum=1.0, value=0.5, step=0.001
                    )
                    inpaint_mode = gr.Dropdown(["merge", "first"], value="merge", label="inpaint_mode")

            with gr.Column():
                gallery = gr.outputs.Image(
                    type="pil",
                ).style(full_width=True, full_height=True)

        run_button.click(fn=run_grounded_sam, inputs=[
                        input_image, text_prompt, task_type, inpaint_prompt, box_threshold, text_threshold, iou_threshold, inpaint_mode], outputs=[gallery])


    block.launch(server_name='0.0.0.0', server_port=args.port, debug=args.debug, share=args.share)