File size: 8,994 Bytes
5c0a088
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f8946c1
 
5c0a088
 
f8946c1
5c0a088
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
from toolbox import CatchException, report_execption, gen_time_str
from toolbox import update_ui, promote_file_to_downloadzone, update_ui_lastest_msg, disable_auto_promotion
from toolbox import write_history_to_file, get_log_folder
from .crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
from .crazy_utils import request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency
from .crazy_utils import read_and_clean_pdf_text
from .pdf_fns.parse_pdf import parse_pdf, get_avail_grobid_url
from colorful import *
import os
import math
import logging

def markdown_to_dict(article_content):
    import markdown
    from bs4 import BeautifulSoup
    cur_t = ""
    cur_c = ""
    results = {}
    for line in article_content:
        if line.startswith('#'):
            if cur_t!="":
                if cur_t not in results:
                    results.update({cur_t:cur_c.lstrip('\n')})
                else:
                    # 处理重名的章节
                    results.update({cur_t + " " + gen_time_str():cur_c.lstrip('\n')})
            cur_t = line.rstrip('\n')
            cur_c = ""
        else:
            cur_c += line
    results_final = {}
    for k in list(results.keys()):
        if k.startswith('# '):
            results_final['title'] = k.split('# ')[-1]
            results_final['authors'] = results.pop(k).lstrip('\n')
        if k.startswith('###### Abstract'):
            results_final['abstract'] = results.pop(k).lstrip('\n')

    results_final_sections = []
    for k,v in results.items():
        results_final_sections.append({
            'heading':k.lstrip("# "),
            'text':v if len(v) > 0 else f"The beginning of {k.lstrip('# ')} section."
        })
    results_final['sections'] = results_final_sections
    return results_final


@CatchException
def 批量翻译PDF文档(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):

    disable_auto_promotion(chatbot)
    # 基本信息:功能、贡献者
    chatbot.append([
        "函数插件功能?",
        "批量翻译PDF文档。函数插件贡献者: Binary-Husky"])
    yield from update_ui(chatbot=chatbot, history=history) # 刷新界面

    # 尝试导入依赖,如果缺少依赖,则给出安装建议
    try:
        import nougat
        import tiktoken
    except:
        report_execption(chatbot, history,
                         a=f"解析项目: {txt}",
                         b=f"导入软件依赖失败。使用该模块需要额外依赖,安装方法```pip install --upgrade nougat-ocr tiktoken```。")
        yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
        return

    # 清空历史,以免输入溢出
    history = []

    from .crazy_utils import get_files_from_everything
    success, file_manifest, project_folder = get_files_from_everything(txt, type='.pdf')
    # 检测输入参数,如没有给定输入参数,直接退出
    if not success:
        if txt == "": txt = '空空如也的输入栏'

    # 如果没找到任何文件
    if len(file_manifest) == 0:
        report_execption(chatbot, history,
                         a=f"解析项目: {txt}", b=f"找不到任何.tex或.pdf文件: {txt}")
        yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
        return

    # 开始正式执行任务
    yield from 解析PDF_基于NOUGAT(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt)




def 解析PDF_基于NOUGAT(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt):
    import copy
    import tiktoken
    TOKEN_LIMIT_PER_FRAGMENT = 1280
    generated_conclusion_files = []
    generated_html_files = []
    DST_LANG = "中文"
    from crazy_functions.crazy_utils import nougat_interface, construct_html
    nougat_handle = nougat_interface()
    for index, fp in enumerate(file_manifest):
        chatbot.append(["当前进度:", f"正在解析论文,请稍候。(第一次运行时,需要花费较长时间下载NOUGAT参数)"]); yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
        fpp = yield from nougat_handle.NOUGAT_parse_pdf(fp, chatbot, history)

        with open(fpp, 'r', encoding='utf8') as f:
            article_content = f.readlines()
        article_dict = markdown_to_dict(article_content)
        logging.info(article_dict)

        prompt = "以下是一篇学术论文的基本信息:\n"
        # title
        title = article_dict.get('title', '无法获取 title'); prompt += f'title:{title}\n\n'
        # authors
        authors = article_dict.get('authors', '无法获取 authors'); prompt += f'authors:{authors}\n\n'
        # abstract
        abstract = article_dict.get('abstract', '无法获取 abstract'); prompt += f'abstract:{abstract}\n\n'
        # command
        prompt += f"请将题目和摘要翻译为{DST_LANG}。"
        meta = [f'# Title:\n\n', title, f'# Abstract:\n\n', abstract ]

        # 单线,获取文章meta信息
        paper_meta_info = yield from request_gpt_model_in_new_thread_with_ui_alive(
            inputs=prompt,
            inputs_show_user=prompt,
            llm_kwargs=llm_kwargs,
            chatbot=chatbot, history=[],
            sys_prompt="You are an academic paper reader。",
        )

        # 多线,翻译
        inputs_array = []
        inputs_show_user_array = []

        # get_token_num
        from request_llm.bridge_all import model_info
        enc = model_info[llm_kwargs['llm_model']]['tokenizer']
        def get_token_num(txt): return len(enc.encode(txt, disallowed_special=()))
        from .crazy_utils import breakdown_txt_to_satisfy_token_limit_for_pdf

        def break_down(txt):
            raw_token_num = get_token_num(txt)
            if raw_token_num <= TOKEN_LIMIT_PER_FRAGMENT:
                return [txt]
            else:
                # raw_token_num > TOKEN_LIMIT_PER_FRAGMENT
                # find a smooth token limit to achieve even seperation
                count = int(math.ceil(raw_token_num / TOKEN_LIMIT_PER_FRAGMENT))
                token_limit_smooth = raw_token_num // count + count
                return breakdown_txt_to_satisfy_token_limit_for_pdf(txt, get_token_fn=get_token_num, limit=token_limit_smooth)

        for section in article_dict.get('sections'):
            if len(section['text']) == 0: continue
            section_frags = break_down(section['text'])
            for i, fragment in enumerate(section_frags):
                heading = section['heading']
                if len(section_frags) > 1: heading += f' Part-{i+1}'
                inputs_array.append(
                    f"你需要翻译{heading}章节,内容如下: \n\n{fragment}"
                )
                inputs_show_user_array.append(
                    f"# {heading}\n\n{fragment}"
                )

        gpt_response_collection = yield from request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency(
            inputs_array=inputs_array,
            inputs_show_user_array=inputs_show_user_array,
            llm_kwargs=llm_kwargs,
            chatbot=chatbot,
            history_array=[meta for _ in inputs_array],
            sys_prompt_array=[
                "请你作为一个学术翻译,负责把学术论文准确翻译成中文。注意文章中的每一句话都要翻译。" for _ in inputs_array],
        )
        res_path = write_history_to_file(meta +  ["# Meta Translation" , paper_meta_info] + gpt_response_collection, file_basename=None, file_fullname=None)
        promote_file_to_downloadzone(res_path, rename_file=os.path.basename(fp)+'.md', chatbot=chatbot)
        generated_conclusion_files.append(res_path)

        ch = construct_html() 
        orig = ""
        trans = ""
        gpt_response_collection_html = copy.deepcopy(gpt_response_collection)
        for i,k in enumerate(gpt_response_collection_html): 
            if i%2==0:
                gpt_response_collection_html[i] = inputs_show_user_array[i//2]
            else:
                gpt_response_collection_html[i] = gpt_response_collection_html[i]

        final = ["", "", "一、论文概况",  "", "Abstract", paper_meta_info,  "二、论文翻译",  ""]
        final.extend(gpt_response_collection_html)
        for i, k in enumerate(final): 
            if i%2==0:
                orig = k
            if i%2==1:
                trans = k
                ch.add_row(a=orig, b=trans)
        create_report_file_name = f"{os.path.basename(fp)}.trans.html"
        html_file = ch.save_file(create_report_file_name)
        generated_html_files.append(html_file)
        promote_file_to_downloadzone(html_file, rename_file=os.path.basename(html_file), chatbot=chatbot)

    chatbot.append(("给出输出文件清单", str(generated_conclusion_files + generated_html_files)))
    yield from update_ui(chatbot=chatbot, history=history) # 刷新界面