from toolbox import CatchException, report_execption, write_results_to_file from toolbox import update_ui from .crazy_utils import request_gpt_model_in_new_thread_with_ui_alive from .crazy_utils import request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency from .crazy_utils import read_and_clean_pdf_text from colorful import * @CatchException def 批量翻译PDF文档(txt, llm_kwargs, plugin_kwargs, chatbot, history, sys_prompt, web_port): import glob import os # 基本信息:功能、贡献者 chatbot.append([ "函数插件功能?", "批量总结PDF文档。函数插件贡献者: Binary-Husky"]) yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 # 尝试导入依赖,如果缺少依赖,则给出安装建议 try: import fitz import tiktoken except: report_execption(chatbot, history, a=f"解析项目: {txt}", b=f"导入软件依赖失败。使用该模块需要额外依赖,安装方法```pip install --upgrade pymupdf tiktoken```。") yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 return # 清空历史,以免输入溢出 history = [] # 检测输入参数,如没有给定输入参数,直接退出 if os.path.exists(txt): project_folder = txt else: if txt == "": txt = '空空如也的输入栏' report_execption(chatbot, history, a=f"解析项目: {txt}", b=f"找不到本地项目或无权访问: {txt}") yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 return # 搜索需要处理的文件清单 file_manifest = [f for f in glob.glob( f'{project_folder}/**/*.pdf', recursive=True)] # 如果没找到任何文件 if len(file_manifest) == 0: report_execption(chatbot, history, a=f"解析项目: {txt}", b=f"找不到任何.tex或.pdf文件: {txt}") yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 return # 开始正式执行任务 yield from 解析PDF(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, sys_prompt) def 解析PDF(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, sys_prompt): import os import tiktoken TOKEN_LIMIT_PER_FRAGMENT = 1600 generated_conclusion_files = [] for index, fp in enumerate(file_manifest): # 读取PDF文件 file_content, page_one = read_and_clean_pdf_text(fp) # 递归地切割PDF文件 from .crazy_utils import breakdown_txt_to_satisfy_token_limit_for_pdf from toolbox import get_conf enc = tiktoken.encoding_for_model(*get_conf('LLM_MODEL')) def get_token_num(txt): return len(enc.encode(txt, disallowed_special=())) paper_fragments = breakdown_txt_to_satisfy_token_limit_for_pdf( txt=file_content, get_token_fn=get_token_num, limit=TOKEN_LIMIT_PER_FRAGMENT) page_one_fragments = breakdown_txt_to_satisfy_token_limit_for_pdf( txt=str(page_one), get_token_fn=get_token_num, limit=TOKEN_LIMIT_PER_FRAGMENT//4) # 为了更好的效果,我们剥离Introduction之后的部分(如果有) paper_meta = page_one_fragments[0].split('introduction')[0].split('Introduction')[0].split('INTRODUCTION')[0] # 单线,获取文章meta信息 paper_meta_info = yield from request_gpt_model_in_new_thread_with_ui_alive( inputs=f"以下是一篇学术论文的基础信息,请从中提取出“标题”、“收录会议或期刊”、“作者”、“摘要”、“编号”、“作者邮箱”这六个部分。请用markdown格式输出,最后用中文翻译摘要部分。请提取:{paper_meta}", inputs_show_user=f"请从{fp}中提取出“标题”、“收录会议或期刊”等基本信息。", llm_kwargs=llm_kwargs, chatbot=chatbot, history=[], sys_prompt="Your job is to collect information from materials。", ) # 多线,翻译 gpt_response_collection = yield from request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency( inputs_array=[ f"以下是你需要翻译的论文片段:\n{frag}" for frag in paper_fragments], inputs_show_user_array=[f"\n---\n 原文: \n\n {frag.replace('#', '')} \n---\n 翻译:\n " for frag in paper_fragments], llm_kwargs=llm_kwargs, chatbot=chatbot, history_array=[[paper_meta] for _ in paper_fragments], sys_prompt_array=[ "请你作为一个学术翻译,负责把学术论文的片段准确翻译成中文。" for _ in paper_fragments], max_workers=5 # OpenAI所允许的最大并行过载 ) # 整理报告的格式 for i,k in enumerate(gpt_response_collection): if i%2==0: gpt_response_collection[i] = f"\n\n---\n\n ## 原文[{i//2}/{len(gpt_response_collection)//2}]: \n\n {paper_fragments[i//2].replace('#', '')} \n\n---\n\n ## 翻译[{i//2}/{len(gpt_response_collection)//2}]:\n " else: gpt_response_collection[i] = gpt_response_collection[i] final = ["一、论文概况\n\n---\n\n", paper_meta_info.replace('# ', '### ') + '\n\n---\n\n', "二、论文翻译", ""] final.extend(gpt_response_collection) create_report_file_name = f"{os.path.basename(fp)}.trans.md" res = write_results_to_file(final, file_name=create_report_file_name) # 更新UI generated_conclusion_files.append(f'./gpt_log/{create_report_file_name}') chatbot.append((f"{fp}完成了吗?", res)) yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 # 准备文件的下载 import shutil for pdf_path in generated_conclusion_files: # 重命名文件 rename_file = f'./gpt_log/总结论文-{os.path.basename(pdf_path)}' if os.path.exists(rename_file): os.remove(rename_file) shutil.copyfile(pdf_path, rename_file) if os.path.exists(pdf_path): os.remove(pdf_path) chatbot.append(("给出输出文件清单", str(generated_conclusion_files))) yield from update_ui(chatbot=chatbot, history=history) # 刷新界面