InterviewAnalyzer / sentence-transformers /generate_passage_embeddings.py
DrDominikDellermann's picture
Duplicate from nickmuchi/Earnings-Call-Analysis-Whisperer
5fb0891
raw
history blame
4.52 kB
# Copyright (c) Facebook, Inc. and its affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import os
import argparse
import csv
import logging
import pickle
import numpy as np
import torch
import transformers
import src.slurm
import src.contriever
import src.utils
import src.data
import src.normalize_text
def embed_passages(args, passages, model, tokenizer):
total = 0
allids, allembeddings = [], []
batch_ids, batch_text = [], []
with torch.no_grad():
for k, p in enumerate(passages):
batch_ids.append(p["id"])
if args.no_title or not "title" in p:
text = p["text"]
else:
text = p["title"] + " " + p["text"]
if args.lowercase:
text = text.lower()
if args.normalize_text:
text = src.normalize_text.normalize(text)
batch_text.append(text)
if len(batch_text) == args.per_gpu_batch_size or k == len(passages) - 1:
encoded_batch = tokenizer.batch_encode_plus(
batch_text,
return_tensors="pt",
max_length=args.passage_maxlength,
padding=True,
truncation=True,
)
encoded_batch = {k: v.cuda() for k, v in encoded_batch.items()}
embeddings = model(**encoded_batch)
embeddings = embeddings.cpu()
total += len(batch_ids)
allids.extend(batch_ids)
allembeddings.append(embeddings)
batch_text = []
batch_ids = []
if k % 100000 == 0 and k > 0:
print(f"Encoded passages {total}")
allembeddings = torch.cat(allembeddings, dim=0).numpy()
return allids, allembeddings
def main(args):
model, tokenizer, _ = src.contriever.load_retriever(args.model_name_or_path)
print(f"Model loaded from {args.model_name_or_path}.", flush=True)
model.eval()
model = model.cuda()
if not args.no_fp16:
model = model.half()
passages = src.data.load_passages(args.passages)
shard_size = len(passages) // args.num_shards
start_idx = args.shard_id * shard_size
end_idx = start_idx + shard_size
if args.shard_id == args.num_shards - 1:
end_idx = len(passages)
passages = passages[start_idx:end_idx]
print(f"Embedding generation for {len(passages)} passages from idx {start_idx} to {end_idx}.")
allids, allembeddings = embed_passages(args, passages, model, tokenizer)
save_file = os.path.join(args.output_dir, args.prefix + f"_{args.shard_id:02d}")
os.makedirs(args.output_dir, exist_ok=True)
print(f"Saving {len(allids)} passage embeddings to {save_file}.")
with open(save_file, mode="wb") as f:
pickle.dump((allids, allembeddings), f)
print(f"Total passages processed {len(allids)}. Written to {save_file}.")
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--passages", type=str, default=None, help="Path to passages (.tsv file)")
parser.add_argument("--output_dir", type=str, default="wikipedia_embeddings", help="dir path to save embeddings")
parser.add_argument("--prefix", type=str, default="passages", help="prefix path to save embeddings")
parser.add_argument("--shard_id", type=int, default=0, help="Id of the current shard")
parser.add_argument("--num_shards", type=int, default=1, help="Total number of shards")
parser.add_argument(
"--per_gpu_batch_size", type=int, default=512, help="Batch size for the passage encoder forward pass"
)
parser.add_argument("--passage_maxlength", type=int, default=512, help="Maximum number of tokens in a passage")
parser.add_argument(
"--model_name_or_path", type=str, help="path to directory containing model weights and config file"
)
parser.add_argument("--no_fp16", action="store_true", help="inference in fp32")
parser.add_argument("--no_title", action="store_true", help="title not added to the passage body")
parser.add_argument("--lowercase", action="store_true", help="lowercase text before encoding")
parser.add_argument("--normalize_text", action="store_true", help="lowercase text before encoding")
args = parser.parse_args()
src.slurm.init_distributed_mode(args)
main(args)