|
import streamlit as st |
|
from functions import * |
|
|
|
|
|
st.sidebar.header("Summarization") |
|
|
|
max_len= st.slider("Maximum length of the summarized text",min_value=70,max_value=200,step=10,value=100) |
|
min_len= st.slider("Minimum length of the summarized text",min_value=20,max_value=200,step=10) |
|
|
|
st.markdown("####") |
|
|
|
st.subheader("Summarized Earnings Call with matched Entities") |
|
|
|
if "earnings_passages" not in st.session_state: |
|
st.session_state["earnings_passages"] = '' |
|
|
|
if st.session_state['earnings_passages']: |
|
|
|
with st.spinner("Summarizing and matching entities, this takes a few seconds..."): |
|
|
|
try: |
|
text_to_summarize = chunk_and_preprocess_text(st.session_state['earnings_passages']) |
|
print(text_to_summarize) |
|
summarized_text = summarize_text(text_to_summarize,max_len=max_len,min_len=min_len) |
|
|
|
|
|
except IndexError: |
|
try: |
|
|
|
text_to_summarize = chunk_and_preprocess_text(st.session_state['earnings_passages']) |
|
summarized_text = summarize_text(text_to_summarize,max_len=max_len,min_len=min_len) |
|
|
|
|
|
except IndexError: |
|
|
|
text_to_summarize = chunk_and_preprocess_text(st.session_state['earnings_passages']) |
|
summarized_text = summarize_text(text_to_summarize,max_len=max_len,min_len=min_len) |
|
|
|
entity_match_html = highlight_entities(text_to_summarize,summarized_text) |
|
st.markdown("####") |
|
|
|
with st.expander(label='Summarized Earnings Call',expanded=True): |
|
st.write(entity_match_html, unsafe_allow_html=True) |
|
|
|
st.markdown("####") |
|
|
|
summary_downloader(summarized_text) |
|
|
|
else: |
|
st.write("No text to summarize detected, please ensure you have entered the YouTube URL on the Sentiment Analysis page") |