File size: 19,336 Bytes
17e9cef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
be2d464
17e9cef
 
 
 
 
 
 
 
 
be2d464
3a826be
 
 
 
 
 
7a5298f
3a826be
 
 
 
17e9cef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
70c3fc2
 
be2d464
17e9cef
 
 
 
 
 
 
f83ca53
1c2402e
c4e50bc
1c2402e
 
 
 
 
 
 
17e9cef
37667fb
17e9cef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
37667fb
17e9cef
 
be2d464
17e9cef
7a5298f
17e9cef
 
 
 
 
 
 
 
 
 
 
37667fb
17e9cef
 
37667fb
17e9cef
 
37667fb
17e9cef
 
 
 
 
 
 
37667fb
17e9cef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
import random
import gradio as gr
import imageio
import numpy as np
import onnx
import onnxruntime as rt
import huggingface_hub
from numpy.random import RandomState
from skimage import transform


def get_inter(r1, r2):
    h_inter = max(min(r1[3], r2[3]) - max(r1[1], r2[1]), 0)
    w_inter = max(min(r1[2], r2[2]) - max(r1[0], r2[0]), 0)
    return h_inter * w_inter


def iou(r1, r2):
    s1 = (r1[2] - r1[0]) * (r1[3] - r1[1])
    s2 = (r2[2] - r2[0]) * (r2[3] - r2[1])
    i = get_inter(r1, r2)
    return i / (s1 + s2 - i)


def letterbox(im, new_shape=(640, 640), color=(0.5, 0.5, 0.5), stride=32):
    # Resize and pad image while meeting stride-multiple constraints
    shape = im.shape[:2]  # current shape [height, width]

    # Scale ratio (new / old)
    r = min(new_shape[0] / shape[0], new_shape[1] / shape[1])

    # Compute padding
    new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r))
    dw, dh = new_shape[1] - new_unpad[0], new_shape[0] - new_unpad[1]  # wh padding
    dw, dh = np.mod(dw, stride), np.mod(dh, stride)  # wh padding

    dw /= 2  # divide padding into 2 sides
    dh /= 2

    if shape != new_unpad:  # resize
        im = transform.resize(im, (new_unpad[1], new_unpad[0]))
    top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1))
    left, right = int(round(dw - 0.1)), int(round(dw + 0.1))

    im_new = np.full((new_unpad[1] + top + bottom, new_unpad[0] + left + right, 3), color, dtype=np.float32)
    im_new[top:new_unpad[1] + top, left:new_unpad[0] + left] = im
    return im_new


def nms(pred, conf_thres, iou_thres, max_instance=20):  # pred (anchor_num, 5 + cls_num)
    nc = pred.shape[1] - 5
    candidates = [list() for x in range(nc)]
    for x in pred:
        if x[4] < conf_thres:
            continue
        cls = np.argmax(x[5:])
        p = x[4] * x[5 + cls]
        if conf_thres <= p:
            box = (x[0] - x[2] / 2, x[1] - x[3] / 2, x[0] + x[2] / 2, x[1] + x[3] / 2)  # xywh2xyxy
            candidates[cls].append([p, box])
    result = [list() for x in range(nc)]
    for i, candidate in enumerate(candidates):
        candidate = sorted(candidate, key=lambda a: a[0], reverse=True)
        candidate = candidate[:max_instance]
        for x in candidate:
            ok = True
            for r in result[i]:
                if iou(r[1], x[1]) > iou_thres:
                    ok = False
                    break
            if ok:
                result[i].append(x)

    return result


class Model:
    def __init__(self):
        self.detector = None
        self.encoder = None
        self.g_synthesis = None
        self.g_mapping = None
        self.detector_stride = None
        self.detector_imgsz = None
        self.detector_class_names = None
        self.anime_seg = None
        self.w_avg = None
        self.load_models()

    def load_models(self):
        g_mapping_path = huggingface_hub.hf_hub_download("skytnt/fbanime-gan", "g_mapping.onnx")
        g_synthesis_path = huggingface_hub.hf_hub_download("skytnt/fbanime-gan", "g_synthesis.onnx")
        encoder_path = huggingface_hub.hf_hub_download("skytnt/fbanime-gan", "encoder.onnx")
        detector_path = huggingface_hub.hf_hub_download("skytnt/fbanime-gan", "waifu_dect.onnx")
        anime_seg_path = huggingface_hub.hf_hub_download("skytnt/anime-seg", "isnetis.onnx")

        providers = ['CPUExecutionProvider']
        gpu_providers = ['CUDAExecutionProvider']
        g_mapping = onnx.load(g_mapping_path)
        w_avg = [x for x in g_mapping.graph.initializer if x.name == "w_avg"][0]
        w_avg = np.frombuffer(w_avg.raw_data, dtype=np.float32)[np.newaxis, :]
        w_avg = w_avg.repeat(16, axis=0)[np.newaxis, :]
        self.w_avg = w_avg
        self.g_mapping = rt.InferenceSession(g_mapping_path, providers=gpu_providers + providers)
        self.g_synthesis = rt.InferenceSession(g_synthesis_path, providers=gpu_providers + providers)
        self.encoder = rt.InferenceSession(encoder_path, providers=providers)
        self.detector = rt.InferenceSession(detector_path, providers=providers)
        detector_meta = self.detector.get_modelmeta().custom_metadata_map
        self.detector_stride = int(detector_meta['stride'])
        self.detector_imgsz = 1088
        self.detector_class_names = eval(detector_meta['names'])
        self.anime_seg = rt.InferenceSession(anime_seg_path, providers=providers)

    def get_img(self, w, noise=0):
        img = self.g_synthesis.run(None, {'w': w, "noise": np.asarray([noise], dtype=np.float32)})[0]
        return (img.transpose(0, 2, 3, 1) * 127.5 + 128).clip(0, 255).astype(np.uint8)[0]

    def get_w(self, z, psi1, psi2):
        return self.g_mapping.run(None, {'z': z, 'psi': np.asarray([psi1, psi2], dtype=np.float32)})[0]

    def remove_bg(self, img, s=1024):
        img0 = img
        img = (img / 255).astype(np.float32)
        h, w = h0, w0 = img.shape[:-1]
        h, w = (s, int(s * w / h)) if h > w else (int(s * h / w), s)
        ph, pw = s - h, s - w
        img_input = np.zeros([s, s, 3], dtype=np.float32)
        img_input[ph // 2:ph // 2 + h, pw // 2:pw // 2 + w] = transform.resize(img, (h, w))
        img_input = np.transpose(img_input, (2, 0, 1))
        img_input = img_input[np.newaxis, :]
        mask = self.anime_seg.run(None, {'img': img_input})[0][0]
        mask = np.transpose(mask, (1, 2, 0))
        mask = mask[ph // 2:ph // 2 + h, pw // 2:pw // 2 + w]
        mask = transform.resize(mask, (h0, w0))
        img0 = (img0 * mask + 255 * (1 - mask)).astype(np.uint8)
        return img0

    def encode_img(self, img):
        img = transform.resize(((img / 255 - 0.5) / 0.5), (256, 256)).transpose(2, 0, 1)[np.newaxis, :].astype(
            np.float32)
        return self.encoder.run(None, {'img': img})[0] + self.w_avg

    def detect(self, im0, conf_thres, iou_thres, detail=False):
        if im0 is None:
            return []
        img = letterbox((im0 / 255).astype(np.float32), (self.detector_imgsz, self.detector_imgsz),
                        stride=self.detector_stride)
        # Convert
        img = img.transpose(2, 0, 1)
        img = img[np.newaxis, :]
        pred = self.detector.run(None, {'images': img})[0][0]
        dets = nms(pred, conf_thres, iou_thres)
        imgs = []
        # Print results
        s = '%gx%g ' % img.shape[2:]  # print string
        for i, det in enumerate(dets):
            n = len(det)
            s += f"{n} {self.detector_class_names[i]}{'s' * (n > 1)}, "  # add to string
        if detail:
            print(s)
        waifu_rects = []
        head_rects = []
        body_rects = []

        for i, det in enumerate(dets):
            for x in det:
                # Rescale boxes from img_size to im0 size
                wr = im0.shape[1] / img.shape[3]
                hr = im0.shape[0] / img.shape[2]
                x[1] = (int(x[1][0] * wr), int(x[1][1] * hr),
                        int(x[1][2] * wr), int(x[1][3] * hr))
                if i == 0:
                    head_rects.append(x[1])
                elif i == 1:
                    body_rects.append(x[1])
                elif i == 2:
                    waifu_rects.append(x[1])
        for j, waifu_rect in enumerate(waifu_rects):
            msg = f'waifu {j + 1} '
            head_num = 0
            body_num = 0
            hr, br = None, None
            for r in head_rects:
                if get_inter(r, waifu_rect) / ((r[2] - r[0]) * (r[3] - r[1])) > 0.75:
                    hr = r
                    head_num += 1
            if head_num != 1:
                if detail:
                    print(msg + f'head num error: {head_num}')
                continue
            for r in body_rects:
                if get_inter(r, waifu_rect) / ((r[2] - r[0]) * (r[3] - r[1])) > 0.65:
                    br = r
                    body_num += 1
            if body_num != 1:
                if detail:
                    print(msg + f'body num error: {body_num}')
                continue
            bounds = (min(waifu_rect[0], hr[0], br[0]),
                      min(waifu_rect[1], hr[1], br[1]),
                      max(waifu_rect[2], hr[2], br[2]),
                      max(waifu_rect[3], hr[3], br[3]))
            if (bounds[2] - bounds[0]) / (bounds[3] - bounds[1]) > 0.7:
                if detail:
                    print(msg + "ratio out of limit")
                continue
            expand_pixel = (bounds[3] - bounds[1]) // 20
            bounds = [max(bounds[0] - expand_pixel // 2, 0),
                      max(bounds[1] - expand_pixel, 0),
                      min(bounds[2] + expand_pixel // 2, im0.shape[1]),
                      min(bounds[3] + expand_pixel, im0.shape[0]),
                      ]
            # corp and resize
            w = bounds[2] - bounds[0]
            h = bounds[3] - bounds[1]
            bounds[3] += h % 2
            h += h % 2
            r = min(512 / w, 1024 / h)
            pw, ph = int(512 / r - w), int(1024 / r - h)
            bounds_tmp = (bounds[0] - pw // 2, bounds[1] - ph // 2,
                          bounds[2] + pw // 2 + pw % 2, bounds[3] + ph // 2 + ph % 2)
            bounds = (max(0, bounds_tmp[0]), max(0, bounds_tmp[1]),
                      min(im0.shape[1], bounds_tmp[2]), min(im0.shape[0], bounds_tmp[3]))
            dl = bounds[0] - bounds_tmp[0]
            dr = bounds[2] - bounds_tmp[2]
            dt = bounds[1] - bounds_tmp[1]
            db = bounds[3] - bounds_tmp[3]
            w = bounds_tmp[2] - bounds_tmp[0]
            h = bounds_tmp[3] - bounds_tmp[1]
            temp_img = np.full((h, w, 3), 255, dtype=np.uint8)
            temp_img[dt:h + db, dl:w + dr] = im0[bounds[1]:bounds[3], bounds[0]:bounds[2]]
            temp_img = transform.resize(temp_img, (1024, 512), preserve_range=True).astype(np.uint8)
            imgs.append(temp_img)
        return imgs

    # video 1-2 style
    def gen_video(self, w1, w2, noise, path, frame_num=10):
        video = imageio.get_writer(path, mode='I', fps=frame_num // 2, codec='libx264', bitrate='16M')
        lin = np.linspace(0, 1, frame_num)
        for i in range(0, frame_num):
            img = self.get_img(((1 - lin[i]) * w1) + (lin[i] * w2), noise)
            video.append_data(img)
        video.close()


    # video 1-2-1 style
    def gen_video2(self, w1, w2, noise, path, frame_num=10):
        video = imageio.get_writer(path, mode='I', fps=frame_num // 2, codec='libx264', bitrate='16M')
        lin = np.linspace(0, 1, frame_num)
        for i in range(0, frame_num):
            img = self.get_img(((1 - lin[i]) * w1) + (lin[i] * w2), noise)
            video.append_data(img)
        for i in reversed(range(0, frame_num)):
            img = self.get_img(((1 - lin[i]) * w1) + (lin[i] * w2), noise)
            video.append_data(img)
        video.close()

def get_thumbnail(img):
    img_new = np.full((256, 384, 3), 200, dtype=np.uint8)
    img_new[:, 128:256] = transform.resize(img, (256, 128), preserve_range=True)
    return img_new


def gen_fn(seed, random_seed, psi1, psi2, noise):
    if random_seed:
        seed = random.randint(0, 2 ** 32 - 1)
    z = RandomState(int(seed)).randn(1, 1024)
    w = model.get_w(z.astype(dtype=np.float32), psi1, psi2)
    img_out = model.get_img(w, noise)
    return img_out, seed, w, get_thumbnail(img_out)


def encode_img_fn(img, noise):
    if img is None:
        return "please upload a image", None, None, None, None
    img = model.remove_bg(img)
    imgs = model.detect(img, 0.2, 0.03)
    if len(imgs) == 0:
        return "failed to detect anime character", None, None, None, None
    w = model.encode_img(imgs[0])
    img_out = model.get_img(w, noise)
    return "success", imgs[0], img_out, w, get_thumbnail(img_out)

def gen_video_fn(w1, w2, noise, frame):
    if w1 is None or w2 is None:
        return None
#    model.gen_video(w1, w2, noise, "video.mp4", int(frame))
    model.gen_video2(w1, w2, noise, "video.mp4", int(frame))
    return "video.mp4"


if __name__ == '__main__':
    model = Model()

    app = gr.Blocks()
    with app:
        gr.Markdown("# full-body anime GAN\n\n"
                    "![visitor badge](https://visitor-badge.glitch.me/badge?page_id=o_ob.hf.full-body-anime-gan)\n"
                    "fork from [skytnt](https://huggingface.co/spaces/skytnt/full-body-anime-gan)\n\n"
                    "Image generation and blending using StyleGAN3 (not text2image, not Stable Diffusion)\n"
                    "psi1, psi2 are mapping parameters from nskytnt/fbanime-gan. The psi2 seems to have an effect on clothing, and the psi1 seems to have an effect on sexual styles such as breast enhancement [my experiment results](https://twitter.com/o_ob/status/1607860668543401984).\n"
                    "The video generation generates mp4 with the pattern 1→2→1 for easy comparison.\n\n"
                    "- StyleGAN3を使った画像生成とブレンドです(text2image, Stable Diffusionではありません)\n"
                    "- psi1,2は[nskytnt/fbanime-gan](https://github.com/SkyTNT/fbanimegan/tree/main/stylegan3)のmappingパラメータです。\n"
                    "- psi2は服に影響があり、psi1は胸の強調など性癖っぽいスタイルに影響があるようです([実験結果](https://twitter.com/o_ob/status/1607860668543401984))\n"
                    "- 動画生成は比較しやすいように 1→2→1 というパターンでmp4を生成します。\n")
        with gr.Tabs():
            with gr.TabItem("generate image 新規画像生成"):
                with gr.Row():
                    with gr.Column():
                        gr.Markdown("generate image")
                        with gr.Row():
                            gen_input1 = gr.Slider(minimum=0, maximum=2 ** 32 - 1, step=1, value=0, label="seed")
                            gen_input2 = gr.Checkbox(label="Random", value=True)
                        gen_input3 = gr.Slider(minimum=0, maximum=1, step=0.01, value=0.7, label="truncation psi 1")
                        gen_input4 = gr.Slider(minimum=0, maximum=1, step=0.01, value=1, label="truncation psi 2")
                        gen_input5 = gr.Slider(minimum=0, maximum=1, step=0.01, value=1, label="noise strength")
                        with gr.Group():
                            gen_submit = gr.Button("Generate", variant="primary")
                    with gr.Column():
                        gen_output1 = gr.Image(label="output image")
                        select_img_input_w1 = gr.Variable()
                        select_img_input_img1 = gr.Variable()

            with gr.TabItem("encode image 画像からエンコード"):
                with gr.Row():
                    with gr.Column():
                        gr.Markdown("you'd better upload a standing full-body image 完全な立ち絵の画像をアップロードしてください")
                        encode_img_input = gr.Image(label="input image")
                        examples_data = [[f"examples/{x:02d}.jpg"] for x in range(1, 7)]
                        encode_img_examples = gr.Dataset(components=[encode_img_input], samples=examples_data)
                        with gr.Group():
                            encode_img_submit = gr.Button("Run", variant="primary")
                    with gr.Column():
                        encode_img_output1 = gr.Textbox(label="output message")
                        with gr.Row():
                            encode_img_output2 = gr.Image(label="detected")
                            encode_img_output3 = gr.Image(label="encoded")
                        select_img_input_w2 = gr.Variable()
                        select_img_input_img2 = gr.Variable()

            with gr.TabItem("generate video ビデオ合成"):
                with gr.Row():
                    with gr.Column():
                        gr.Markdown("generate video between 2 images 2つの画像からビデオを生成します")
                        with gr.Row():
                            with gr.Column():
                                select_img1_dropdown = gr.Radio(label="Select image 1", value="current generated image 現在の生成画像から",
                                                                choices=["current generated image",
                                                                         "current encoded image"], type="index")
                                with gr.Group():
                                    select_img1_button = gr.Button("Select", variant="primary")
                                select_img1_output_img = gr.Image(label="selected image 1")
                                select_img1_output_w = gr.Variable()
                            with gr.Column():
                                select_img2_dropdown = gr.Radio(label="Select image 2", value="current generated image 現在の生成画像から",
                                                                choices=["current generated image",
                                                                         "current encoded image"], type="index")
                                with gr.Group():
                                    select_img2_button = gr.Button("Select", variant="primary")
                                select_img2_output_img = gr.Image(label="selected image 2")
                                select_img2_output_w = gr.Variable()
                        generate_video_frame = gr.Slider(minimum=10, maximum=30, step=1, label="frame", value=15)
                        with gr.Group():
                            generate_video_button = gr.Button("Generate", variant="primary")
                    with gr.Column():
                        generate_video_output = gr.Video(label="output video")
        gen_submit.click(gen_fn, [gen_input1, gen_input2, gen_input3, gen_input4, gen_input5],
                         [gen_output1, gen_input1, select_img_input_w1, select_img_input_img1])
        encode_img_submit.click(encode_img_fn, [encode_img_input, gen_input5],
                                [encode_img_output1, encode_img_output2, encode_img_output3, select_img_input_w2,
                                 select_img_input_img2])
        encode_img_examples.click(lambda x: x[0], [encode_img_examples], [encode_img_input])
        select_img1_button.click(lambda i, img1, img2, w1, w2: (img1, w1) if i == 0 else (img2, w2),
                                 [select_img1_dropdown, select_img_input_img1, select_img_input_img2,
                                  select_img_input_w1, select_img_input_w2],
                                 [select_img1_output_img, select_img1_output_w])
        select_img2_button.click(lambda i, img1, img2, w1, w2: (img1, w1) if i == 0 else (img2, w2),
                                 [select_img2_dropdown, select_img_input_img1, select_img_input_img2,
                                  select_img_input_w1, select_img_input_w2],
                                 [select_img2_output_img, select_img2_output_w])
        generate_video_button.click(gen_video_fn,
                                    [select_img1_output_w, select_img2_output_w, gen_input5, generate_video_frame],
                                    [generate_video_output])
    app.launch()