File size: 4,996 Bytes
80085db 7297a63 008a68e 80085db 7a34084 32e411e 7a34084 67ee1ea 80085db 7c8cc8a 80085db |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 |
import gradio as gr
import matplotlib.pyplot as plt
from PIL import Image
from ultralyticsplus import YOLO
import cv2
import numpy as np
from transformers import pipeline
import requests
from io import BytesIO
import os
model = YOLO('Corn-Disease50epoch.pt')
name = ['Corn Rust','Grey Leaf Spot','Leaf Blight', 'Healthy']
image_directory = "/home/user/app/images"
# video_directory = "/home/user/app/video"
# url_example="https://drive.google.com/file/d/1bBq0bNmJ5X83tDWCzdzHSYCdg-aUL4xO/view?usp=drive_link"
# url_example='https://drive.google.com/uc?id=' + url_example.split('/')[-2]
# r = requests.get(url_example)
# im1 = Image.open(BytesIO(r.content))
# url_example="https://drive.google.com/file/d/16Z7QzvZ99fbEPj1sls_jOCJBsC0h_dYZ/view?usp=drive_link"
# url_example='https://drive.google.com/uc?id=' + url_example.split('/')[-2]
# r = requests.get(url_example)
# im2 = Image.open(BytesIO(r.content))
# url_example="https://drive.google.com/file/d/13mjTMS3eR0AKYSbV-Fpb3fTBno_T42JN/view?usp=drive_link"
# url_example='https://drive.google.com/uc?id=' + url_example.split('/')[-2]
# r = requests.get(url_example)
# im3 = Image.open(BytesIO(r.content))
# url_example="https://drive.google.com/file/d/1-XpFsa_nz506Ul6grKElVJDu_Jl3KZIF/view?usp=drive_link"
# url_example='https://drive.google.com/uc?id=' + url_example.split('/')[-2]
# r = requests.get(url_example)
# im4 = Image.open(BytesIO(r.content))
# for i, r in enumerate(results):
# # Plot results image
# im_bgr = r.plot()
# im_rgb = im_bgr[..., ::-1] # Convert BGR to RGB
def response2(image: gr.Image = None,image_size: gr.Slider = 640, conf_threshold: gr.Slider = 0.3, iou_threshold: gr.Slider = 0.6):
results = model.predict(image, conf=conf_threshold, iou=iou_threshold, imgsz=image_size)
text = ""
name_weap = ""
box = results[0].boxes
for r in results:
im_array = r.plot()
im = Image.fromarray(im_array[..., ::-1])
for r in results:
conf = np.array(r.boxes.conf.cpu())
cls = np.array(r.boxes.cls.cpu())
cls = cls.astype(int)
xywh = np.array(r.boxes.xywh.cpu())
xywh = xywh.astype(int)
for con, cl, xy in zip(conf, cls, xywh):
cone = con.astype(float)
conef = round(cone,3)
conef = conef * 100
text += (f"Detected {name[cl]} with confidence {round(conef,1)}% at ({xy[0]},{xy[1]})\n")
# xywh = int(results.boxes.xywh)
# x = xywh[0]
# y = xywh[1]
return im, text
inputs = [
gr.Image(type="pil", label="Input Image"),
gr.Slider(minimum=320, maximum=1280, value=640,
step=32, label="Image Size"),
gr.Slider(minimum=0.0, maximum=1.0, value=0.3,
step=0.05, label="Confidence Threshold"),
gr.Slider(minimum=0.0, maximum=1.0, value=0.6,
step=0.05, label="IOU Threshold"),
]
outputs = [gr.Image( type="pil", label="Output Image"),
gr.Textbox(label="Result")
]
examples = [
["/home/user/app/images/jagung7.jpg", 640, 0.3, 0.6]
]
title = """Corn Diseases Detection Finetuned YOLOv8
<br></br>
<a href="https://colab.research.google.com/drive/1ittrxr--vJeRqJquZyNfo7dlq6xRADox?authuser=4">
<img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Colab" style="display:inline-block;">
</a> """
description = 'Image Size: Defines the image size for inference.\nConfidence Treshold: Sets the minimum confidence threshold for detections.\nIOU Treshold: Intersection Over Union (IoU) threshold for Non-Maximum Suppression (NMS). Useful for reducing duplicates.'
def pil_to_cv2(pil_image):
open_cv_image = cv2.cvtColor(np.array(pil_image), cv2.COLOR_RGB2BGR)
return open_cv_image
def process_video(video_path):
cap = cv2.VideoCapture(video_path)
while cap.isOpened():
ret, frame = cap.read()
if not ret:
break
pil_img = Image.fromarray(frame[..., ::-1])
result = model.predict(source=pil_img)
for r in result:
im_array = r.plot()
processed_frame = Image.fromarray(im_array[..., ::-1])
yield processed_frame
cap.release()
video_iface = gr.Interface(
fn=process_video,
inputs=[
gr.Video(label="Upload Video", interactive=True)
],
outputs=gr.Image(type="pil",label="Result"),
title=title,
description="Upload video for inference.",
# examples=[[os.path.join(video_directory, "ExampleRifle.mp4")],
# [os.path.join(video_directory, "Knife.mp4")],
# ]
)
image_iface = gr.Interface(fn=response2, inputs=inputs, outputs=outputs, examples=examples, title=title, description=description, theme="dark")
demo = gr.TabbedInterface([image_iface, video_iface], ["Image Inference", "Video Inference"])
if __name__ == '__main__':
demo.launch() |