DtYXs's picture
Duplicate from OFA-Sys/OFA-Visual_Grounding
e10152a
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
from dataclasses import dataclass, field
import json
import logging
from typing import Optional
from argparse import Namespace
from itertools import zip_longest
from collections import OrderedDict
import numpy as np
import sacrebleu
import string
from fairseq import metrics, utils
from fairseq.tasks import register_task
from tasks.ofa_task import OFATask, OFAConfig
from data.mm_data.caption_dataset import CaptionDataset
from data.file_dataset import FileDataset
from utils.cider.pyciderevalcap.ciderD.ciderD import CiderD
EVAL_BLEU_ORDER = 4
logger = logging.getLogger(__name__)
@dataclass
class CaptionConfig(OFAConfig):
eval_bleu: bool = field(
default=False, metadata={"help": "evaluation with BLEU scores"}
)
eval_cider: bool = field(
default=False, metadata={"help": "evaluation with CIDEr scores"}
)
eval_args: Optional[str] = field(
default='{}',
metadata={
"help": 'generation args for BLUE or CIDEr scoring, e.g., \'{"beam": 4, "lenpen": 0.6}\', as JSON string'
},
)
eval_print_samples: bool = field(
default=False, metadata={"help": "print sample generations during validation"}
)
eval_cider_cached_tokens: Optional[str] = field(
default=None,
metadata={"help": "path to cached cPickle file used to calculate CIDEr scores"},
)
scst: bool = field(
default=False, metadata={"help": "Self-critical sequence training"}
)
scst_args: str = field(
default='{}',
metadata={
"help": 'generation args for Self-critical sequence training, as JSON string'
},
)
@register_task("caption", dataclass=CaptionConfig)
class CaptionTask(OFATask):
def __init__(self, cfg: CaptionConfig, src_dict, tgt_dict):
super().__init__(cfg, src_dict, tgt_dict)
def load_dataset(self, split, epoch=1, combine=False, **kwargs):
paths = self.cfg.data.split(',')
assert len(paths) > 0
if split == 'train':
file_path = paths[(epoch - 1) % (len(paths) - 1)]
else:
file_path = paths[-1]
dataset = FileDataset(file_path, self.cfg.selected_cols)
self.datasets[split] = CaptionDataset(
split,
dataset,
self.bpe,
self.src_dict,
self.tgt_dict,
max_src_length=self.cfg.max_src_length,
max_tgt_length=self.cfg.max_tgt_length,
patch_image_size=self.cfg.patch_image_size,
imagenet_default_mean_and_std=self.cfg.imagenet_default_mean_and_std,
scst=getattr(self.cfg, 'scst', False)
)
def build_model(self, cfg):
model = super().build_model(cfg)
if self.cfg.eval_bleu or self.cfg.eval_cider:
gen_args = json.loads(self.cfg.eval_args)
self.sequence_generator = self.build_generator(
[model], Namespace(**gen_args)
)
if self.cfg.eval_cider:
self.CiderD_scorer = CiderD(df=self.cfg.eval_cider_cached_tokens)
if self.cfg.scst:
scst_args = json.loads(self.cfg.scst_args)
self.scst_generator = self.build_generator(
[model], Namespace(**scst_args)
)
return model
def _calculate_cider_scores(self, gen_res, gt_res):
'''
gen_res: generated captions, list of str
gt_idx: list of int, of the same length as gen_res
gt_res: ground truth captions, list of list of str.
gen_res[i] corresponds to gt_res[gt_idx[i]]
Each image can have multiple ground truth captions
'''
gen_res_size = len(gen_res)
res = OrderedDict()
for i in range(gen_res_size):
res[i] = [gen_res[i].strip()]
gts = OrderedDict()
gt_res_ = [
[gt_res[i][j].strip() for j in range(len(gt_res[i]))]
for i in range(len(gt_res))
]
for i in range(gen_res_size):
gts[i] = gt_res_[i]
res_ = [{'image_id': i, 'caption': res[i]} for i in range(len(res))]
_, scores = self.CiderD_scorer.compute_score(gts, res_)
return scores
def valid_step(self, sample, model, criterion):
loss, sample_size, logging_output = criterion(model, sample)
model.eval()
if self.cfg.eval_bleu or self.cfg.eval_cider:
hyps, refs = self._inference(self.sequence_generator, sample, model)
if self.cfg.eval_bleu:
if self.cfg.eval_tokenized_bleu:
bleu = sacrebleu.corpus_bleu(hyps, list(zip_longest(*refs)), tokenize="none")
else:
bleu = sacrebleu.corpus_bleu(hyps, list(zip_longest(*refs)))
logging_output["_bleu_sys_len"] = bleu.sys_len
logging_output["_bleu_ref_len"] = bleu.ref_len
# we split counts into separate entries so that they can be
# summed efficiently across workers using fast-stat-sync
assert len(bleu.counts) == EVAL_BLEU_ORDER
for i in range(EVAL_BLEU_ORDER):
logging_output["_bleu_counts_" + str(i)] = bleu.counts[i]
logging_output["_bleu_totals_" + str(i)] = bleu.totals[i]
if self.cfg.eval_cider:
scores = self._calculate_cider_scores(hyps, refs)
logging_output["_cider_score_sum"] = scores.sum()
logging_output["_cider_cnt"] = scores.size
return loss, sample_size, logging_output
def reduce_metrics(self, logging_outputs, criterion):
super().reduce_metrics(logging_outputs, criterion)
def sum_logs(key):
import torch
result = sum(log.get(key, 0) for log in logging_outputs)
if torch.is_tensor(result):
result = result.cpu()
return result
if self.cfg.eval_bleu:
counts, totals = [], []
for i in range(EVAL_BLEU_ORDER):
counts.append(sum_logs("_bleu_counts_" + str(i)))
totals.append(sum_logs("_bleu_totals_" + str(i)))
if max(totals) > 0:
# log counts as numpy arrays -- log_scalar will sum them correctly
metrics.log_scalar("_bleu_counts", np.array(counts))
metrics.log_scalar("_bleu_totals", np.array(totals))
metrics.log_scalar("_bleu_sys_len", sum_logs("_bleu_sys_len"))
metrics.log_scalar("_bleu_ref_len", sum_logs("_bleu_ref_len"))
def compute_bleu(meters):
import inspect
import sacrebleu
fn_sig = inspect.getfullargspec(sacrebleu.compute_bleu)[0]
if "smooth_method" in fn_sig:
smooth = {"smooth_method": "exp"}
else:
smooth = {"smooth": "exp"}
bleu = sacrebleu.compute_bleu(
correct=meters["_bleu_counts"].sum,
total=meters["_bleu_totals"].sum,
sys_len=meters["_bleu_sys_len"].sum,
ref_len=meters["_bleu_ref_len"].sum,
**smooth
)
return round(bleu.score, 2)
metrics.log_derived("bleu", compute_bleu)
if self.cfg.eval_cider:
def compute_cider(meters):
cider = meters["_cider_score_sum"].sum / meters["_cider_cnt"].sum
cider = cider if isinstance(cider, float) else cider.item()
return round(cider, 3)
if sum_logs("_cider_cnt") > 0:
metrics.log_scalar("_cider_score_sum", sum_logs("_cider_score_sum"))
metrics.log_scalar("_cider_cnt", sum_logs("_cider_cnt"))
metrics.log_derived("cider", compute_cider)
def _inference(self, generator, sample, model):
def decode(toks, escape_unk=False):
s = self.tgt_dict.string(
toks.int().cpu(),
# The default unknown string in fairseq is `<unk>`, but
# this is tokenized by sacrebleu as `< unk >`, inflating
# BLEU scores. Instead, we use a somewhat more verbose
# alternative that is unlikely to appear in the real
# reference, but doesn't get split into multiple tokens.
unk_string=("UNKNOWNTOKENINREF" if escape_unk else "UNKNOWNTOKENINHYP"),
)
if self.bpe:
s = self.bpe.decode(s)
return s
gen_out = self.inference_step(generator, [model], sample)
hyps, refs = [], []
transtab = str.maketrans({key: None for key in string.punctuation})
for i in range(len(gen_out)):
decode_tokens = decode(gen_out[i][0]["tokens"])
hyps.append(decode_tokens.translate(transtab).strip())
refs.append(
[
sent.translate(transtab).strip()
for sent in decode(
utils.strip_pad(sample["target"][i], self.tgt_dict.pad()),
escape_unk=True, # don't count <unk> as matches to the hypo
).split('&&')
]
)
if self.cfg.eval_print_samples:
logger.info("example hypothesis: " + hyps[0])
logger.info("example reference: " + ' && '.join(refs[0]))
return hyps, refs