AllModel / app.py
Dzhuk's picture
create app.py
2417027 verified
raw
history blame
615 Bytes
# import gradio as gr
# from transformers import pipeline
# pipeline = pipeline(task="image-classification", model="julien-c/hotdog-not-hotdog")
# def predict(input_img):
# predictions = pipeline(input_img)
# return input_img, {p["label"]: p["score"] for p in predictions}
# gradio_app = gr.Interface(
# predict,
# inputs=gr.Image(label="Select hot dog candidate", sources=['upload', 'webcam'], type="pil"),
# outputs=[gr.Image(label="Processed Image"), gr.Label(label="Result", num_top_classes=2)],
# title="Hot Dog? Or Not?",
# )
# if __name__ == "__main__":
# gradio_app.launch()