# import gradio as gr | |
# from transformers import pipeline | |
# pipeline = pipeline(task="image-classification", model="julien-c/hotdog-not-hotdog") | |
# def predict(input_img): | |
# predictions = pipeline(input_img) | |
# return input_img, {p["label"]: p["score"] for p in predictions} | |
# gradio_app = gr.Interface( | |
# predict, | |
# inputs=gr.Image(label="Select hot dog candidate", sources=['upload', 'webcam'], type="pil"), | |
# outputs=[gr.Image(label="Processed Image"), gr.Label(label="Result", num_top_classes=2)], | |
# title="Hot Dog? Or Not?", | |
# ) | |
# if __name__ == "__main__": | |
# gradio_app.launch() |