Seidazymov Adil commited on
Commit
4f92cf0
1 Parent(s): de86ddb

Detect language

Browse files
Files changed (1) hide show
  1. app.py +52 -14
app.py CHANGED
@@ -1,18 +1,56 @@
1
- # import gradio as gr
2
- # from transformers import pipeline
 
3
 
4
- # pipeline = pipeline(task="image-classification", model="julien-c/hotdog-not-hotdog")
5
 
6
- # def predict(input_img):
7
- # predictions = pipeline(input_img)
8
- # return input_img, {p["label"]: p["score"] for p in predictions}
 
 
 
 
 
 
9
 
10
- # gradio_app = gr.Interface(
11
- # predict,
12
- # inputs=gr.Image(label="Select hot dog candidate", sources=['upload', 'webcam'], type="pil"),
13
- # outputs=[gr.Image(label="Processed Image"), gr.Label(label="Result", num_top_classes=2)],
14
- # title="Hot Dog? Or Not?",
15
- # )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
16
 
17
- # if __name__ == "__main__":
18
- # gradio_app.launch()
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from transformers import pipeline
3
+ from gradio_client import Client, file
4
 
 
5
 
6
+ def detect_language(file_path):
7
+ client = Client("adrien-alloreview/speechbrain-lang-id-voxlingua107-ecapa")
8
+ result = client.predict(param_0=file(file_path), api_name="/predict")
9
+ language_result = result["label"].split(": ")[1]
10
+ if language_result.lower() in ["russian", "belarussian", "ukrainian"]:
11
+ selected_language = "russian"
12
+ else:
13
+ selected_language = "kazakh"
14
+ return selected_language
15
 
16
+ # def detect_emotion(audio):
17
+ # pipe = pipeline(
18
+ # "audio-classification",
19
+ # model="HowMannyMore/wav2vec2-lg-xlsr-ur-speech-emotion-recognition",
20
+ # )
21
+ # res = pipe(audio)
22
+ # emotion_with_max_score = res[0]["label"]
23
+ #
24
+ # return emotion_with_max_score
25
+ #
26
+ #
27
+ # def detect_toxic_local(text_whisper):
28
+ # model_name_rus = "IlyaGusev/rubertconv_toxic_clf"
29
+ # pipe = pipeline(
30
+ # "text-classification",
31
+ # model=model_name_rus,
32
+ # tokenizer=model_name_rus,
33
+ # framework="pt",
34
+ # max_length=512,
35
+ # truncation=True,
36
+ # device=0,
37
+ # )
38
+ # res = pipe([text_whisper])[0]["label"]
39
+ # if res == "toxic":
40
+ # return True
41
+ # if res == "neutral":
42
+ # return False
43
+ # else:
44
+ # return None
45
 
46
+
47
+ gradio_app = gr.Interface(
48
+ fn=detect_language,
49
+ inputs=gr.Audio(source="upload", type="filepath"),
50
+ outputs="text",
51
+ title="File Upload Transcription",
52
+ description="Upload an audio file to determine language."
53
+ )
54
+
55
+ if __name__ == "__main__":
56
+ gradio_app.launch()