Spaces:
Runtime error
Runtime error
import torch | |
import gradio as gr | |
from transformers import pipeline, T5ForConditionalGeneration, T5Tokenizer | |
from diffusers import StableDiffusionPipeline, EulerDiscreteScheduler | |
# generate lyrics | |
lyrics_generator = pipeline("text-generation", "ECE1786-AG/lyrics-generator") | |
# summarize lyrics | |
model = T5ForConditionalGeneration.from_pretrained("Michau/t5-base-en-generate-headline") | |
tokenizer = T5Tokenizer.from_pretrained("Michau/t5-base-en-generate-headline") | |
# generate single cover | |
scheduler = EulerDiscreteScheduler.from_pretrained("stabilityai/stable-diffusion-2", subfolder="scheduler") | |
pipe = StableDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2", scheduler=scheduler, revision="fp16", torch_dtype=torch.float16) | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
pipe = pipe.to(device) | |
def generate_lyrics(genre, prompt): | |
complete_prompt = "<BOS> <{0}>\n{1}".format(genre, prompt) | |
lyrics = lyrics_generator(complete_prompt, max_length=1024) | |
lyrics = lyrics[0]['generated_text'] | |
lyrics = lyrics.split('\n', 1)[1] # remove first line from the generated lyrics | |
return lyrics | |
def summarize_lyrics(lyrics): | |
text = "headline: " + lyrics | |
encoding = tokenizer.encode_plus(text, return_tensors = "pt") | |
input_ids = encoding["input_ids"] | |
attention_masks = encoding["attention_mask"] | |
beam_outputs = model.generate( | |
input_ids = input_ids, | |
attention_mask = attention_masks, | |
max_length = 100, | |
num_beams = 5, | |
early_stopping = True, | |
) | |
result = tokenizer.decode(beam_outputs[0]) | |
result = result.replace('<pad>', '') | |
result = result.replace('</s>', '') | |
return result | |
def generate_cover(prompt, style, effect): | |
prompt = summarize_lyrics(prompt) # call function summarize_lyrics to summarize lyrics | |
prompt = prompt + ", " + effect + ", album cover, artistic, " + style | |
print(prompt) | |
image = pipe(prompt).images[0] | |
return image | |
demo = gr.Blocks() | |
with demo: | |
gr.HTML( | |
""" | |
<div style="text-align: center; max-width: 700px; margin: 0 auto;"> | |
<div style="display: inline-flex; align-items: center; gap: 0.8rem; font-size: 1.75rem;"> | |
<h1 style="font-weight: 900; margin-bottom: 7px;">ArtIstic GENREator</h1> | |
</div> | |
<p style="margin-bottom: 10px; font-size: 94%">Generate Inspirational Lyrics and Single Cover</p> | |
</div> | |
""" | |
) | |
with gr.Row(): | |
# Left column (lyrics generation) | |
with gr.Column(): | |
with gr.Accordion("Step 1. Generate Lyrics"): | |
gr.Markdown("Enter the starting text and select genre to generate lyrics") | |
with gr.Row(): | |
input_start_text = gr.Textbox(placeholder='I am', label="Starting Text") | |
input_lyrics_type = gr.Radio(choices=['pop', 'rap', 'country', 'rock', 'r&b'], value='pop', label="Lyrics Genre") | |
button_gen_lyrics = gr.Button("Generate Lyrics", variant="primary") | |
output_generated_lyrics = gr.Textbox(label="Generated Lyrics", lines=8) | |
# Right column (single cover generation) | |
with gr.Column(): | |
with gr.Accordion("Step 2. Generate Single Cover"): | |
gr.Markdown("Cover will be generated based on style, effect and generated lyrics") | |
with gr.Row(): | |
input_cover_style = gr.Dropdown(choices=['painted', 'abstract', 'minimalist', 'illustrated', 'photographic', 'vintage'], value='painted', label="Track Cover Style") | |
input_cover_effect = gr.Radio(choices=['black and white', 'highly detailed', 'blurred'], value='highly detailed', label="Track Cover Effect") | |
button_gen_cover = gr.Button("Generate Cover", variant="primary") | |
output_generated_cover = gr.Image(label="Generated Cover") | |
# Bind functions to buttons | |
button_gen_lyrics.click(fn=generate_lyrics, inputs=[input_lyrics_type , input_start_text], outputs=output_generated_lyrics) | |
button_gen_cover.click(fn=generate_cover, inputs=[output_generated_lyrics, input_cover_style, input_cover_effect], outputs=output_generated_cover) | |
demo.launch(debug=True) |