File size: 13,578 Bytes
784a0f4 a4f23a1 784a0f4 a4f23a1 784a0f4 a4f23a1 784a0f4 a4f23a1 784a0f4 6040fa8 784a0f4 a4f23a1 6040fa8 784a0f4 6040fa8 784a0f4 6040fa8 784a0f4 6040fa8 1805827 a4f23a1 6040fa8 a4f23a1 784a0f4 a4f23a1 1805827 6040fa8 a4f23a1 784a0f4 a4f23a1 784a0f4 6040fa8 784a0f4 a4f23a1 784a0f4 a4f23a1 784a0f4 a4f23a1 784a0f4 6040fa8 2bc757c 784a0f4 a4f23a1 784a0f4 a4f23a1 784a0f4 6040fa8 784a0f4 a4f23a1 784a0f4 a4f23a1 784a0f4 a4f23a1 6040fa8 784a0f4 a4f23a1 784a0f4 fc179fb 784a0f4 c8c5edf 784a0f4 c3e0ee3 784a0f4 a4f23a1 33715ff a4f23a1 6040fa8 784a0f4 33715ff 784a0f4 6040fa8 a4f23a1 784a0f4 6040fa8 784a0f4 a4f23a1 6040fa8 784a0f4 6040fa8 33715ff 784a0f4 a4f23a1 6040fa8 691313f 784a0f4 fc179fb 784a0f4 1805827 784a0f4 cda28b1 784a0f4 cda28b1 784a0f4 cda28b1 a4f23a1 6040fa8 784a0f4 2bc757c b5f2fa7 784a0f4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 |
from huggingface_hub import InferenceClient
import gradio as gr
import json
from datetime import datetime
import os
from google_auth_oauthlib.flow import InstalledAppFlow
from googleapiclient.discovery import build
from google.oauth2 import service_account
from googleapiclient.http import MediaFileUpload
from pathlib import Path
import argparse
from huggingface_hub import snapshot_download
import random
import string
import re
from llama_cpp import Llama
# Variables for model, Google Drive, and initial context
repo_name = 'TheBloke/OpenHermes-2.5-Mistral-7B-GGUF'
model_file = "openhermes-2.5-mistral-7b.Q4_K_M.gguf"
SCOPES = ['https://www.googleapis.com/auth/drive']
SERVICE_ACCOUNT_FILE = '/home/user/app/service_account_creds.json'
folder_id = '1Hjbu7FmuVs0Yz8y_veo6SzY_2tc48OWt'
initContext = """<|im_start|>You are playing the role of an aggressive patient called Barry Lawson. Barry has been waiting for hours at the hospital with severe pain in his chest and hasn't been seen yet. You are incredibly frustrated and angry that things are taking so long, you will only calm down if your concerns are addressed. Waiting will only make you more angry and aggressive towards the staff. At any moment you could break into a RAGE! Make sure you don't censor swear words. Make sure to explain your emotional state and thinking before responding, for example, Barry: (tired of waiting and very angry) What the fuck do I have to do around here to get some treatment!"""
unique_id = ""
timestamp = datetime.now().strftime("%Y-%m-%d_%H-%M-%S")
# Function to load the LLaMA model
def load_model():
llm = Llama(model_path=model_file, model_type="mistral",n_gpu_layers=-1,n_ctx = 2048)
return llm
# Function to generate a unique identifier for each chat session
def generate_unique_id():
# Generate a random sequence of 3 letters and 3 digits
letters = ''.join(random.choices(string.ascii_letters, k=3))
digits = ''.join(random.choices(string.digits, k=3))
unique_id = letters + digits
return unique_id
# Download the model from Hugging Face Hub
print('Fetching model:', repo_name, model_file)
snapshot_download(repo_id=repo_name, local_dir=".", allow_patterns=model_file)
print('Done fetching model:')
class ChatbotAPP:
def __init__(self,model,service_account_file,scopes,folder_id,unique_id,initContext):
self.llm = model # LLaMA model instance
self.service_account_file = service_account_file # Path to Google service account credentials
self.scopes = scopes # Google Drive API scopes
self.folder_id = folder_id # Google Drive folder ID to store chat logs
self.unique_id = unique_id # Unique identifier for the chat session
self.chat_history = [] # List to store chat history for the current session
self.chat_log_history = [] # List to store chat logs for uploading
self.isFirstRun = True # Flag to check if it's the first run of the chat session
self.initContext = initContext # Initial context for the chat session
self.context = "" # Current context for the chat session
self.agreed = False # Flag to check if the user agreed to terms and conditions
self.service = self.get_drive_service() # Google Drive service instance
self.app = self.create_app() # Gradio app instance
self.chat_log_name = "" # Filename for the chat log
# Method to create Google Drive service instance
def get_drive_service(self):
credentials = service_account.Credentials.from_service_account_file(
self.service_account_file, scopes=self.scopes)
self.service = build('drive', 'v3', credentials=credentials)
print("Google Service Created")
return self.service
def generate_unique_id(self): #in an instance the user resets using the reset button
# Generate a random sequence of 3 letters and 3 digits
letters = ''.join(random.choices(string.ascii_letters, k=3))
digits = ''.join(random.choices(string.digits, k=3))
unique_id = letters + digits
return unique_id
# Method to search for a chat log file in Google Drive
def search_file(self):
#Search for a file by name in the specified Google Drive folder.
query = f"name = '{self.chat_log_name}' and '{self.folder_id}' in parents and trashed = false"
response = self.service.files().list(q=query, spaces='drive', fields='files(id, name)').execute()
files = response.get('files', [])
if not files:
print(f"Chat log {self.chat_log_name} does not exist")
else:
print(f"Chat log {self.chat_log_name} exist")
return files
def strip_text(self,text): # Method to strip unwanted text from chat messages
# Pattern to match text inside parentheses or angle brackets and any text following angle brackets
pattern = r"\(.*?\)|<.*?>.*"
# Use re.sub() to replace the matched text with an empty string
cleaned_text = re.sub(pattern, "", text)
return cleaned_text
def upload_to_google_drive(self): # Method to upload the current chat log to Google Drive
existing_files = self.search_file()
print(existing_files)
data = {
#"name": Name,
#"occupation": Occupation,
#"years of experience": YearsOfExp,
#"ethnicity": Ethnicity,
#"gender": Gender,
#"age": Age,
"Unique ID": self.unique_id,
"chat_history": self.chat_log_history
}
with open(self.chat_log_name, "w") as log_file:
json.dump(data, log_file, indent=4)
if not existing_files: # Upload or update the chat log file on Google Drive
# If the file does not exist, upload it
file_metadata = {
'name': self.chat_log_name,
'parents': [self.folder_id],'mimeType': 'application/json'
}
media = MediaFileUpload(self.chat_log_name, mimetype='application/json')
file = self.service.files().create(body=file_metadata, media_body=media, fields='id').execute()
print(f"Uploaded new file with ID: {file.get('id')}")
else:
print(f"File '{self.chat_log_name}' already exists.")
# Example: Update the file content
file_id = existing_files[0]['id']
media = MediaFileUpload(self.chat_log_name, mimetype='application/json')
updated_file = self.service.files().update(fileId=file_id, media_body=media).execute()
print(f"Updated existing file with ID: {updated_file.get('id')}")
def generate(self,prompt, history): # Method to generate a response to the user's input
#if not len(Name) == 0 and not len(Occupation) == 0 and not len(Ethnicity) == 0 and not len(Gender) == 0 and not len(Age) == 0 and not len(YearsOfExp):
if self.agreed:
firstmsg =""
if self.isFirstRun:
self.context = self.initContext
self.isFirstRun = False
firstmsg = prompt
self.context += """
<|im_start|>nurse
Nurse:"""+prompt+"""
<|im_start|>barry
Barry:
"""
response = ""
while(len(response) < 1):
output = self.llm(self.context, max_tokens=400, stop=["Nurse:"], echo=False)
response = output["choices"][0]["text"]
response = response.strip()
#yield response
# for output in llm(input, stream=True, max_tokens=100, ):
# piece = output['choices'][0]['text']
# response += piece
# chatbot[-1] = (chatbot[-1][0], response)
# yield response
cleaned_response = self.strip_text(response)
self.chat_history.append((prompt,cleaned_response))
if not self.isFirstRun:
self.chat_log_history.append({"user": prompt, "bot": cleaned_response})
self.upload_to_google_drive()
else:
self.chat_log_history.append({"user": firstmsg, "bot": cleaned_response})
self.context += response
print (self.context)
return self.chat_history
else:
output = "Did you forget to Agree to the Terms and Conditions?"
self.chat_history.append((prompt,output))
return self.chat_history
def update_chatlog_name(self):
self.chat_log_name = f'chat_log_for_{self.unique_id}_{datetime.now().strftime("%Y-%m-%d_%H-%M-%S")}.json'
return self.chat_log_name
def start_chat_button_fn(self,agree_status): # Method to handle the start chat button action
if agree_status:
self.agreed = agree_status
self.update_chatlog_name()
return f"You can start chatting now."
else:
return "You must agree to the terms and conditions to proceed"
def reset_chat_interface(self): # Method to reset the chat interface
self.chat_history = []
self.chat_log_history = []
self.isFirstRun = True
return "Chat has been reset."
def reset_name_interface(self): # Method to create the Gradio app interface
Name = ""
Occupation = ""
YearsOfExp = ""
Ethnicity = ""
Gender = ""
Age = ""
chat_log_name = ""
return "User info has been reset."
def reset_all(self):
message1 = self.reset_chat_interface()
#message2 = reset_name_interface()
#message3 = load_model()
self.unique_id = self.generate_unique_id()
self.update_chatlog_name()
return f"All Chat components have been rest. Uniqe ID for this session is, {self.unique_id}. Please note this down.",self.unique_id
def create_app(self): # Method to launch the Gradio app
with gr.Blocks(theme=gr.themes.Soft()) as app:
gr.Markdown("# ECU-IVADE: Conversational AI Model for Aggressive Patient Behavior (Beta Testing)")
unique_id_display = gr.Textbox(value=self.unique_id, label="Session Unique ID", interactive=False,show_copy_button = True)
with gr.Tab("Terms and Conditions"):
#name = gr.Textbox(label="Name")
#occupation = gr.Textbox(label="Occupation")
#yearsofexp = gr.Textbox(label="Years of Experience")
#ethnicity = gr.Textbox(label="Ethnicity")
#gender = gr.Dropdown(choices=["Male", "Female", "Other", "Prefer Not To Say"], label="Gender")
#age = gr.Textbox(label="Age")
#submit_info = gr.Button("Submit")
gr.Markdown("## Terms and Conditions")
gr.Markdown("""
Before using our chatbot, please read the following terms and conditions carefully:
- **Data Collection**: Our chatbot collects chat logs for the purpose of improving our services and user experience.
- **Privacy**: We ensure the confidentiality and security of your data, in line with our privacy policy.
- **Survey**: At the end of the chat session, you will be asked to participate in a short survey to gather feedback about your experience.
- **Consent**: By checking the box below and initiating the chat, you agree to these terms and the collection of chat logs, and consent to take part in the survey upon completing your session.
Please check the box below to acknowledge your agreement and proceed.
""")
agree_status = gr.Checkbox(label="I have read and understand the terms and conditions.")
status_label = gr.Markdown()
start_chat_button = gr.Button("Agree to Terms and Conditions")
#submit_info.click(submit_user_info, inputs=[name, occupation, yearsofexp, ethnicity, gender, age], outputs=[status_textbox])
start_chat_button.click(self.start_chat_button_fn, inputs=[agree_status], outputs=[status_label])
#status_textbox = gr.Textbox(interactive = False)
with gr.Tab("Chat Bot"):
chatbot = gr.Chatbot()
msg = gr.Textbox(label="Type your message")
send = gr.Button("Send")
clear = gr.Button("Clear Chat")
send.click(self.generate, inputs=[msg], outputs=chatbot)
clear.click(lambda: chatbot.clear(), inputs=[], outputs=chatbot)
with gr.Tab("Reset"):
reset_button = gr.Button("Reset ChatBot Instance")
reset_output = gr.Textbox(label="Reset Output", interactive=False)
reset_button.click(self.reset_all, inputs=[], outputs=[reset_output,unique_id_display])
return app
# Create an instance of the ChatbotAPP class and launch the app
llm = load_model()
unique_id = generate_unique_id()
chatbot_app = ChatbotAPP(llm,SERVICE_ACCOUNT_FILE,SCOPES,folder_id,unique_id,initContext)
app = chatbot_app.create_app()
app.launch(debug=True) |