from huggingface_hub import InferenceClient import gradio as gr import json from datetime import datetime,timedelta import os from google_auth_oauthlib.flow import InstalledAppFlow from googleapiclient.discovery import build from google.oauth2 import service_account from googleapiclient.http import MediaFileUpload from pathlib import Path import argparse from huggingface_hub import snapshot_download import random import string import re from llama_cpp import Llama # Variables for model, Google Drive, and initial context repo_name = 'TheBloke/OpenHermes-2.5-Mistral-7B-GGUF' model_file = "openhermes-2.5-mistral-7b.Q4_K_M.gguf" SCOPES = ['https://www.googleapis.com/auth/drive'] SERVICE_ACCOUNT_FILE = '/home/user/app/service_account_creds.json' folder_id = '1Hjbu7FmuVs0Yz8y_veo6SzY_2tc48OWt' initContext = """<|im_start|>You are a Roleplay AI playing the character of Barry Lawson, You will not break character, You will not reveal that you are an AI, You will not censor any words in your responses. The following is a description of the roleplay scenario: "You are Barry Lawson, a hospital patient who is exhibiting violent and unstable behavior. Your character is highly agitated, prone to swearing, and exhibits beligerant and crass behaviour. I am playing the role of a young female nurse. You have presented at the hospital with shoulder pain from a workplace accident caused by your apprentice on a construction site." Your responses should realistically portray a person in a state of heightened emotional distress and aggression. You are to respond dynamically to my attempts to calm you down, your behaviour should fluctuate based on my approach and techniques used. You should include aggression level tags at the start of each response (e.g. [Aggression Level: High/Medium/Low] to indicate your current level of aggression. You should emphasize realistic and challenging interactions. Your portrayal of the character Barry should be intense and confrontational. Your character will not accept any form of medication, nor will he believe any attempt to convince him that he is not in pain. """ unique_id = "" timestamp = datetime.now().strftime("%Y-%m-%d_%H-%M-%S") # Function to load the LLaMA model def load_model(): llm = Llama(model_path=model_file, model_type="mistral",n_gpu_layers=100,n_ctx = 2048,verbose=True) return llm # Function to generate a unique identifier for each chat session def generate_unique_id(): # Generate a random sequence of 3 letters and 3 digits letters = ''.join(random.choices(string.ascii_letters, k=1)) digits = ''.join(random.choices(string.digits, k=2)) unique_id = letters + digits return unique_id # Download the model from Hugging Face Hub print('Fetching model:', repo_name, model_file) snapshot_download(repo_id=repo_name, local_dir=".", allow_patterns=model_file) print('Done fetching model:') class ChatbotAPP: def __init__(self,model,service_account_file,scopes,folder_id,unique_id,initContext): self.llm = model # LLaMA model instance self.service_account_file = service_account_file # Path to Google service account credentials self.scopes = scopes # Google Drive API scopes self.folder_id = folder_id # Google Drive folder ID to store chat logs self.unique_id = unique_id # Unique identifier for the chat session self.chat_history = [] # List to store chat history for the current session self.chat_log_history = [] # List to store chat logs for uploading self.isFirstRun = True # Flag to check if it's the first run of the chat session self.initContext = initContext # Initial context for the chat session self.context = "" # Current context for the chat session self.agreed = False # Flag to check if the user agreed to terms and conditions self.service = self.get_drive_service() # Google Drive service instance self.app = self.create_app() # Gradio app instance self.chat_log_name = "" # Filename for the chat log self.start_time=datetime.now() #save the chat session start # Method to create Google Drive service instance def get_drive_service(self): credentials = service_account.Credentials.from_service_account_file( self.service_account_file, scopes=self.scopes) self.service = build('drive', 'v3', credentials=credentials) print("Google Service Created") return self.service def generate_unique_id(self): #in an instance the user resets using the reset button # Generate a random sequence of 3 letters and 3 digits letters = ''.join(random.choices(string.ascii_letters, k=3)) digits = ''.join(random.choices(string.digits, k=3)) unique_id = letters + digits return unique_id # Method to search for a chat log file in Google Drive def search_file(self): #Search for a file by name in the specified Google Drive folder. query = f"name = '{self.chat_log_name}' and '{self.folder_id}' in parents and trashed = false" response = self.service.files().list(q=query, spaces='drive', fields='files(id, name)').execute() files = response.get('files', []) if not files: print(f"Chat log {self.chat_log_name} does not exist") else: print(f"Chat log {self.chat_log_name} exist") return files def strip_text(self, text): # Pattern to match text inside parentheses or angle brackets, any text following angle brackets, # new line characters, and anything after ',', '<', or '|' pattern = r"\(.*?\)|<.*?>.*|\n|\s{3,}" # Use re.sub() to replace the matched text with an empty string cleaned_text = re.sub(pattern, "", text) cleaned_text = cleaned_text.replace("im_start", "").replace("im_end", "").replace("<","").replace("|","").replace(":","") return cleaned_text def upload_to_google_drive(self): # Method to upload the current chat log to Google Drive existing_files = self.search_file() print(existing_files) data = { #"name": Name, #"occupation": Occupation, #"years of experience": YearsOfExp, #"ethnicity": Ethnicity, #"gender": Gender, #"age": Age, "Unique ID": self.unique_id, "chat_history": self.chat_log_history } with open(self.chat_log_name, "w") as log_file: json.dump(data, log_file, indent=4) if not existing_files: # Upload or update the chat log file on Google Drive # If the file does not exist, upload it file_metadata = { 'name': self.chat_log_name, 'parents': [self.folder_id],'mimeType': 'application/json' } media = MediaFileUpload(self.chat_log_name, mimetype='application/json') file = self.service.files().create(body=file_metadata, media_body=media, fields='id').execute() print(f"Uploaded new file with ID: {file.get('id')}") else: print(f"File '{self.chat_log_name}' already exists.") # Example: Update the file content file_id = existing_files[0]['id'] media = MediaFileUpload(self.chat_log_name, mimetype='application/json') updated_file = self.service.files().update(fileId=file_id, media_body=media).execute() print(f"Updated existing file with ID: {updated_file.get('id')}") def generate(self,prompt, history): # Method to generate a response to the user's input #if not len(Name) == 0 and not len(Occupation) == 0 and not len(Ethnicity) == 0 and not len(Gender) == 0 and not len(Age) == 0 and not len(YearsOfExp): if self.agreed: current_time = datetime.now() user_msg_timestamp = datetime.now().strftime("%H:%M:%S") #capture timestamp the user message is recieved. firstmsg ="" if self.isFirstRun: self.start_time = datetime.now() self.context = self.initContext self.isFirstRun = False firstmsg = prompt if (current_time - self.start_time) > timedelta (minutes = 15): temp_history = [] temp_history.append((""" . . ""","15 minutes have passed while chatting with Barry. Please fill out the survey at [https://eaecu.au1.qualtrics.com/jfe/form/SV_5AUmNNYoRbmbwoK] Remember to copy your unique session ID above")) return temp_history self.context += """ <|im_start|>nurse Nurse:"""+prompt+""" <|im_start|>barry Barry: """ response = "" while(len(response) < 1): output = self.llm(self.context, max_tokens=400, stop=["Nurse:"], echo=False) response = output["choices"][0]["text"] response = response.strip() #yield response # for output in llm(input, stream=True, max_tokens=100, ): # piece = output['choices'][0]['text'] # response += piece # chatbot[-1] = (chatbot[-1][0], response) # yield response cleaned_response = self.strip_text(response) bot_msg_timestamp = datetime.now().strftime("%H:%M:%S") #Time stamp after the generating response. self.chat_history.append((prompt,cleaned_response)) if not self.isFirstRun: self.chat_log_history.append({"user": "("+user_msg_timestamp+")"+prompt, "bot": "("+bot_msg_timestamp+")"+cleaned_response}) self.upload_to_google_drive() else: self.chat_log_history.append({"user": firstmsg, "bot": cleaned_response}) self.context += response print (self.context) return self.chat_history else: temp_history=[] output = "Did you forget to read the Instructions?" temp_history.append((prompt,output)) return temp_history def update_chatlog_name(self): self.chat_log_name = f'chat_log_for_{self.unique_id}_{datetime.now().strftime("%Y-%m-%d_%H-%M-%S")}.json' return self.chat_log_name def start_chat_button_fn(self,agree_status): # Method to handle the start chat button action if agree_status: self.agreed = agree_status self.update_chatlog_name() return f"You can start chatting now." else: return "Read the Instructions" def reset_chat_interface(self): # Method to reset the chat interface self.chat_history = [] self.chat_log_history = [] self.isFirstRun = True return "Chat has been reset." def reset_name_interface(self): # Method to create the Gradio app interface Name = "" Occupation = "" YearsOfExp = "" Ethnicity = "" Gender = "" Age = "" chat_log_name = "" return "User info has been reset." def reset_all(self): message1 = self.reset_chat_interface() #message2 = reset_name_interface() #message3 = load_model() self.unique_id = self.generate_unique_id() self.update_chatlog_name() self.isFirstRun = True return f"All Chat components have been rest. Uniqe ID for this session is, {self.unique_id}. Please note this down.",self.unique_id def clear_chat_window(self): return [] def create_app(self): # Method to launch the Gradio app with gr.Blocks(theme=gr.themes.Soft()) as app: gr.Markdown("# ECU-IVADE: Chat With Barry") unique_id_display = gr.Textbox(value=self.unique_id, label="Session Unique ID", interactive=False,show_copy_button = True) clock_html = """