Spaces:
Running
on
Zero
Running
on
Zero
File size: 35,552 Bytes
d43c3c5 27c0da4 d43c3c5 3156d96 704a12b b84561d d43c3c5 c46710e d43c3c5 c46710e d43c3c5 994bd5b 62beae5 994bd5b 1d8054a 994bd5b 2b801f4 994bd5b 2b801f4 1d8054a 994bd5b d43c3c5 994bd5b d43c3c5 994bd5b d43c3c5 994bd5b d43c3c5 994bd5b 3156d96 994bd5b d43c3c5 994bd5b 006bdc6 994bd5b d43c3c5 994bd5b b83da92 994bd5b d43c3c5 994bd5b 3156d96 994bd5b d43c3c5 994bd5b 3156d96 994bd5b b84561d d43c3c5 994bd5b 3156d96 994bd5b 3156d96 994bd5b 62beae5 994bd5b b83da92 994bd5b 2b801f4 006bdc6 994bd5b 2b801f4 994bd5b 2b801f4 994bd5b 2b801f4 994bd5b 21a32f7 d43c3c5 23bda42 eddbb97 d43c3c5 53ae485 d43c3c5 b83da92 d43c3c5 ae51ed8 d43c3c5 994bd5b d43c3c5 23bda42 006bdc6 d43c3c5 23bda42 d43c3c5 23bda42 d43c3c5 006bdc6 994bd5b 006bdc6 eddbb97 d43c3c5 994bd5b d43c3c5 006bdc6 d43c3c5 f174699 d43c3c5 ae51ed8 d43c3c5 2b801f4 1d8054a d43c3c5 006bdc6 d43c3c5 41aa245 d43c3c5 006bdc6 d43c3c5 ae51ed8 006bdc6 d43c3c5 2b801f4 d43c3c5 2b801f4 006bdc6 d43c3c5 994bd5b d43c3c5 994bd5b d43c3c5 994bd5b d43c3c5 994bd5b d43c3c5 726c69b 006bdc6 2b801f4 d43c3c5 994bd5b d43c3c5 2b801f4 994bd5b 3156d96 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 |
import gradio as gr
import spaces
import numpy as np
import random
from diffusers import DiffusionPipeline
import torch
from diffusers import StableDiffusionXLPipeline
import requests
import torch
from PIL import Image
from transformers import AutoProcessor, AutoModelForVision2Seq, BitsAndBytesConfig
from transformers.image_utils import load_image
from peft import PeftModel
import re
from diffusers import StableDiffusionXLPipeline, DiffusionPipeline
import anthropic
import base64
from datasets import load_dataset
from PIL import Image
css="""
#col-container {
margin: 0 auto;
max-width: 520px;
}
#gen-container {
margin: 0 auto;
max-width: 640px;
}
#title-container {
margin: 0 auto;
max-width: 1340px;
}
#main-container {
margin: 0 auto;
max-width: 1340px;
}
"""
with gr.Blocks(css=css, title="ViPer Demo", theme=gr.themes.Base()) as demo:
device = "cuda" if torch.cuda.is_available() else "cpu"
#word_list_dataset = load_dataset("EPFL-VILAB/4m-wordlist", data_files="list.txt", use_auth_token=True)
#word_list = word_list_dataset["train"]['text']
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.float16,
llm_int8_skip_modules=["lm_head", "embed_tokens"],
)
processor = AutoProcessor.from_pretrained("HuggingFaceM4/idefics2-8b", size= {"longest_edge": 448, "shortest_edge": 378}, do_image_splitting=False)
vpe_model = AutoModelForVision2Seq.from_pretrained(
"HuggingFaceM4/idefics2-8b",
torch_dtype=torch.float16,
quantization_config=bnb_config,
)
vpe_model = PeftModel.from_pretrained(vpe_model, "EPFL-VILAB/VPE-ViPer").to("cuda")
vpe_model = AutoModelForVision2Seq.from_pretrained(
"HuggingFaceM4/idefics2-8b",
torch_dtype=torch.float16,
quantization_config=bnb_config,
)
vpe_model = PeftModel.from_pretrained(vpe_model, "VPE2").to("cuda")
if torch.cuda.is_available():
pipe = StableDiffusionXLPipeline.from_pretrained(
"stabilityai/stable-diffusion-xl-base-1.0",
torch_dtype=torch.float16
).to("cuda")
else:
pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", use_safetensors=True)
pipe = pipe.to(device)
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024
valid_api = ""
if torch.cuda.is_available():
power_device = "GPU"
else:
power_device = "CPU"
mioo = [
"comment_images/15.png",
"test.png",
"comment_images/0.png",
"comment_images/1.png",
"comment_images/2.png",
"comment_images/3.png",
"comment_images/4.png",
"comment_images/5.png",
"comment_images/6.png",
"comment_images/7.png",
"comment_images/8.png",
"comment_images/9.png",
"comment_images/10.png",
"comment_images/11.png",
"comment_images/12.png",
"comment_images/13.png",
"comment_images/14.png",
"comment_images/16.png",
"comment_images/17.png",
"comment_images/18.png",
"comment_images/19.png",
"comment_images/20.png",
"comment_images/21.png",
"comment_images/22.png",
"comment_images/23.png",
"comment_images/24.png",
"comment_images/25.png",
"comment_images/26.png",
"comment_images/27.png",
"comment_images/28.png",
"comment_images/29.png",
"comment_images/30.png",
"comment_images/31.png",
"comment_images/32.png",
"comment_images/33.png",
"comment_images/34.png",
"comment_images/35.png",
"comment_images/36.png",
"comment_images/37.png",
"comment_images/38.png",
"comment_images/39.png",
"comment_images/40.png",
"comment_images/41.png",
"comment_images/42.jpg",
"comment_images/43.png",
"comment_images/44.png",
"comment_images/45.png",
"comment_images/46.png",
"comment_images/47.png",
"comment_images/48.png",
"comment_images/49.png",
"comment_images/50.png",
"comment_images/51.png",
"comment_images/52.png",
"comment_images/53.png",
"comment_images/54.png",
"comment_images/55.png"
]
comment_images = gr.State(mioo)
example_prompts = [
"Painting of a lady",
"Cityscape during a thunderstorm",
"Inside an abondoned train, window view",
"A person reaching for stars",
"Abandoned robot at the depth of the sea",
"Lonely astronaut in abyss",
"Human in a frame"
]
examples = {
"A person reaching for stars":[
"examples/A person reaching fo_0.png",
"examples/A person reaching fo_1.png",
"examples/A person reaching fo_2.png",
"examples/A person reaching fo_4.png",
"examples/A person reaching fo_5.png",
"examples/A person reaching fo_6.png",
"examples/A person reaching fo_8.png",
"examples/A person reaching fo_9.png",
"examples/A person reaching fo_10.png",
],
"Abandoned robot at the depth of the sea":[
"examples/Abandoned robot at t_0.png",
"examples/Abandoned robot at t_1.png",
"examples/Abandoned robot at t_2.png",
"examples/Abandoned robot at t_4.png",
"examples/Abandoned robot at t_5.png",
"examples/Abandoned robot at t_6.png",
"examples/Abandoned robot at t_8.png",
"examples/Abandoned robot at t_9.png",
"examples/Abandoned robot at t_10.png",
],
"Cityscape during a thunderstorm":[
"examples/Cityscape during a t_0.png",
"examples/Cityscape during a t_1.png",
"examples/Cityscape during a t_2.png",
"examples/Cityscape during a t_4.png",
"examples/Cityscape during a t_5.png",
"examples/Cityscape during a t_6.png",
"examples/Cityscape during a t_8.png",
"examples/Cityscape during a t_9.png",
"examples/Cityscape during a t_10.png",
],
"Human in a frame":[
"examples/Human in a frame_0.png",
"examples/Human in a frame_1.png",
"examples/Human in a frame_2.png",
"examples/Human in a frame_4.png",
"examples/Human in a frame_5.png",
"examples/Human in a frame_6.png",
"examples/Human in a frame_8.png",
"examples/Human in a frame_9.png",
"examples/Human in a frame_10.png",
],
"Inside an abondoned train, window view":[
"examples/Inside an abondoned _0.png",
"examples/Inside an abondoned _1.png",
"examples/Inside an abondoned _2.png",
"examples/Inside an abondoned _4.png",
"examples/Inside an abondoned _5.png",
"examples/Inside an abondoned _6.png",
"examples/Inside an abondoned _8.png",
"examples/Inside an abondoned _9.png",
"examples/Inside an abondoned _10.png",
],
"Lonely astronaut in abyss":[
"examples/Lonely astronaut in _0.png",
"examples/Lonely astronaut in _1.png",
"examples/Lonely astronaut in _2.png",
"examples/Lonely astronaut in _4.png",
"examples/Lonely astronaut in _5.png",
"examples/Lonely astronaut in _6.png",
"examples/Lonely astronaut in _8.png",
"examples/Lonely astronaut in _9.png",
"examples/Lonely astronaut in _10.png",
],
"Painting of a lady":[
"examples/Painting of a lady_0.png",
"examples/Painting of a lady_1.png",
"examples/Painting of a lady_2.png",
"examples/Painting of a lady_4.png",
"examples/Painting of a lady_5.png",
"examples/Painting of a lady_6.png",
"examples/Painting of a lady_8.png",
"examples/Painting of a lady_9.png",
"examples/Painting of a lady_10.png",
]
}
#comments = {'test.png': "Not sure about the concept, it's too straightforward. Though the boy looks kinda creepy which makes it exciting. the art style is pretty to look at. I like that the colors are muted, but wish they were a bit darker to make it more eerie and add depth.", 'comment_images/0.png': "Hate this with a passion. The colors are too vibrant and don't match at all. I hate these colors in general. The patterns are too abstract and contemporary. a 5-year-old could draw this. pass.", 'comment_images/1.png': "Woah I love the art style. The texture feels like old paper which is oh so beautiful. There are so many details to focus on. I love the expressive lines and how busy the composition is. Even though orange isn't my favorite, the greenish blue color of the water is so gorgeous.", 'comment_images/2.png': "I don't like how monochromatic and muted this one is. but the paperish texture is nice and the details are so intricate.", 'comment_images/3.png': "Oh super pretty! Looks so smooth and wet. Love the details and loose lines too. Feels mystical and magical and eerie. Also dark purples and blues? deep indigo? My fav ever. I'm here for it.", 'comment_images/4.png': "Love the art style. The uncanny vibe and nightmarish horror is so cool. Like its horror but if you squint you can't tell? Love the strange. wish it had more colors though. not a fan of greyscale.", 'comment_images/5.png': 'omg I hate this haha. what the hell. everything about it disgusts me so boring and childish ew.', 'comment_images/6.png': 'yessss. give it to the texture give it to the brushstrokes give it to the style. perfect. just wish the colors were less beige and more bold. I want an active nightmare. but kisses to the surrealism.'}
comments = gr.State(dict())
image_index = gr.State(0)
def submit_comment(comment, comments, comment_images, image_index):
if comment != "":
comments[comment_images[0]] = comment
comment_images.append(comment_images[0])
comment_images = comment_images[1:]
image_index = (image_index + 1) % len(comment_images)
elif comment_images[0] in comments:
comments.pop(comment_images[0], None)
next_comment = ""
if comment_images[0] in comments:
next_comment = comments[comment_images[0]]
clear_botton = gr.Button("Clear comments", interactive=len(comments) != 0)
return (gr.Image(value=comment_images[0], label=f"image {image_index+1}/{len(comment_images)}", show_label=True),
gr.Text(label="Comment", show_label=False, lines=4, max_lines=5, placeholder="Enter your comment. The more detailed the better.", value=next_comment, container=False),
gr.Button(f"Extract visual preference from {len(comments)} comments", interactive=len(comments) >= 5, variant="primary"),
clear_botton,
comments,
comment_images,
image_index
)
def next_image(comments, comment_images, image_index):
comment_images.append(comment_images[0])
comment_images = comment_images[1:]
next_comment = ""
if comment_images[0] in comments:
next_comment = comments[comment_images[0]]
image_index = (image_index + 1) % len(comment_images)
return gr.Image(value=comment_images[0], label=f"image {image_index+1}/{len(comment_images)}", show_label=True), gr.Text(label="Comment", show_label=False, lines=4, max_lines=5, placeholder="Enter your comment. The more detailed the better.", value=next_comment, container=False), comments, comment_images, image_index
def previous_image(comments, comment_images, image_index):
comment_images = comment_images[::-1]
comment_images.append(comment_images[0])
comment_images = comment_images[1:]
comment_images = comment_images[::-1]
next_comment = ""
if comment_images[0] in comments:
next_comment = comments[comment_images[0]]
image_index = (image_index - 1) % len(comment_images)
return gr.Image(value=comment_images[0], label=f"image {image_index+1}/{len(comment_images)}", show_label=True), gr.Text(label="Comment", show_label=False, lines=4, max_lines=5, placeholder="Enter your comment. The more detailed the better.", value=next_comment, container=False), comments, comment_images, image_index
def clear_comments(comments):
comments.clear()
extract_vp_botton = gr.Button(f"Extract visual preference from {len(comments)} comments", interactive=len(comments) >= 5, variant="primary")
clear_botton = gr.Button("Clear comments", interactive=len(comments) != 0)
return extract_vp_botton, clear_botton, comments
@spaces.GPU(duration=120)
def extract_vp_from_vpe(comments):
if len(comments) < 8:
gr.Warning("Fewer than 8 comments may lead to errors.")
keys = list(comments.keys())
random.shuffle(keys)
comments = dict([(key, comments[key]) for key in keys])
prompt = """I will provide a set of artworks along with accompanying comments from a person. Analyze these artworks and the comments on them and identify artistic features such as present or mentioned colors, style, composition, mood, medium, texture, brushwork, lighting, shadow effects, perspective, and other noteworthy elements.
Your task is to extract the artistic features the person likes and dislikes based on both the artworks' features and the person's comments. Focus solely on artistic aspects and refrain from considering subject matter.
If the person expresses a preference for a specific aspect without clearly stating its category (e.g., appreciating the colors without specifying which colors), identify these specific features from the images directly to make the person's preference understandable without needing to see the artwork.
Your output should consist of two concise lists of keywords: one listing the specific art features the person likes and another listing the specific features they dislike (specified in keyword format without using sentences).
Here are the images and their corresponding comments:
"""
messages = [
{
"role": "user",
"content": [
{"type": "text",
"text": prompt},
]
}
]
images = []
comment_number = 1
for image in comments:
comment = comments[image]
image = Image.open(image)
images.append(image)
messages[0]["content"].append(
{"type": "image"}
)
messages[0]["content"].append(
{"type": "text",
"text": f"Comment {comment_number}: {comment}"}
)
comment_number = comment_number + 1
prompt = processor.apply_chat_template(messages, add_generation_prompt=True)
inputs = processor(text=prompt, images=images, return_tensors="pt")
inputs = {k: v.to(device) for k, v in inputs.items()}
generated_ids = vpe_model.generate(**inputs, max_new_tokens=2000, repetition_penalty=0.99, do_sample=False)
generated_texts = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
if re.match(r"(.|\n)*Assistant: Liked Art Features: (.|\n)*Disliked Art Features: (.|\n)*", generated_texts):
positive_vp, negative_vp = re.search('.* \nAssistant: Liked Art Features: (.*)\nDisliked Art Features: (.*)', generated_texts).groups()
positive_vp = positive_vp.split(", ")
negative_vp = negative_vp.split(", ")
common = list(set(positive_vp).intersection(negative_vp))
for vp in positive_vp:
if vp in common:
positive_vp.remove(vp)
for vp in negative_vp:
if vp in common:
negative_vp.remove(vp)
positive_vp = ", ".join(positive_vp)
negative_vp = ", ".join(negative_vp)
gr.Info("Visual preference successfully extracted.")
else:
positive_vp = ""
negative_vp = ""
gr.Warning("VP extraction failed: Please comment on more images.")
return positive_vp, negative_vp
def extract_vp(comments):
if valid_api == "":
positive_vp, negative_vp = extract_vp_from_vpe(comments)
else:
client = anthropic.Anthropic(
api_key=valid_api,
)
prompt = """**Objective:**
Analyze a set of artworks and accompanying comments from a person to identify artistic features they like and dislike.
**Steps:**
1. **Analyze Artworks and Comments:**
- Examine each artwork for artistic features such as colors, style, composition, mood, medium, texture, brushwork, lighting, shadow effects, perspective, and other noteworthy elements.
- Review the accompanying comments to understand the person's preferences and opinions on these features.
2. **Identify Preferences:**
- Extract artistic features that the person likes and dislikes based on the artworks' features and the comments.
- Focus solely on artistic aspects and ignore the subject matter.
- Convert the art features mentioned in the comments to well-known synonyms if needed.
3. **Resolve Ambiguous Preferences:**
- If the person expresses a preference without clearly stating its category (e.g., "I like the style" without specifying which style), identify these specific features from the images directly.
- Make the person's preference understandable and independednt of the artworks.
4. **Output Format:**
- Create two concise lists of keywords: one for features the person likes and another for features they dislike.
- Ensure the lists are in keyword format, divided by commas, without using sentences.
- Maintain detail and accuracy for all comments and images.
**Your Task:**
Follow the example format and ensure that your output consists of two lists of keywords summarizing the person's preferences based on the artworks and comments provided. Consider all comments and images comprehensively.
**Example**: example START:
"""
messages = [
{
"role": "user",
"content": [
{"type": "text",
"text": prompt},
]
}
]
images = []
comment_number = 1
for image in comments:
comment = comments[image]
if not image.lower().endswith(".jpg"):
jpg_image_path = image.replace("png", "jpg")
image = Image.open(image)
rgb_img = image.convert("RGB")
rgb_img.save(jpg_image_path, format="JPEG")
with open(jpg_image_path, "rb") as image_file:
image = base64.b64encode(image_file.read()).decode("utf-8")
else:
with open(image_path, "rb") as image_file:
image = base64.b64encode(image_file.read()).decode("utf-8")
messages[0]["content"].append(
{"type": "text",
"text": f"Image {comment_number}:"}
)
messages[0]["content"].append(
{"type": "image",
"source": {
"type": "base64",
"media_type": "image/jpeg",
"data": image,
},}
)
messages[0]["content"].append(
{"type": "text",
"text": f"Comment {comment_number}: {comment}"}
)
comment_number = comment_number + 1
message = client.messages.create(
model="claude-3-5-sonnet-20240620",
max_tokens=1024,
messages=messages
)
generated_text = message.content[0].text
if re.match(r"(.|\n)*Like.*:(.|\n)*Dislike.(.|\n)*", generated_texts):
positive_vp, negative_vp = re.search('.*Like.*:\n(.*)\n*Dislike.*:\n(.*)', generated_text).groups()
gr.Info("Visual preference successfully extracted.")
else:
positive_vp = ""
negative_vp = ""
gr.Warning("VP extraction failed: Please comment on more images.")
return gr.Textbox(label="Liked visual attributes", lines=3, value=positive_vp, interactive=True), gr.Textbox(label="Disliked visual attributes", lines=1, value=negative_vp, interactive=True), gr.Button("Run personalized generation", scale=0, interactive=True, variant="primary"), comments
def api_fn(api):
global valid_api
client = anthropic.Anthropic(
api_key=api,
)
try:
message = client.messages.create(
model="claude-3-5-sonnet-20240620",
max_tokens=1024,
messages=[
{"role": "user", "content": "Hello, Claude"}
]
)
gr.Info("Valid API")
valid_api = api
except anthropic.AuthenticationError:
gr.Warning("Invalid API!")
valid_api = ""
except anthropic.BadRequestError:
gr.Warning("Invalid API!")
valid_api = ""
except anthropic.PermissionDeniedError:
gr.Warning("Invalid API!")
valid_api = ""
except anthropic.RateLimitError:
gr.Warning("Invalid API!")
valid_api = ""
def generate_out(prompt, vp_pos, vp_neg, slider, example_prompt, gallery, num_inference_steps, seed, randomize_seed):
if vp_pos == "" and vp_neg == "":
gr.Warning("Visual preference is empty.", duration=10)
return generate(prompt, vp_pos, vp_neg, slider, example_prompt, gallery, num_inference_steps, seed, randomize_seed)
@spaces.GPU(duration=45)
def generate(prompt, vp_pos, vp_neg, slider, example_prompt, gallery, num_inference_steps, seed, randomize_seed):
if vp_pos == "" and vp_neg == "":
slider = 0
#for filter in word_list:
# if re.search(rf"\b{filter}\b", prompt):
# raise gr.Error("Please try again with a different prompt")
# if re.search(rf"\b{filter}\b", vp_pos) or re.search(rf"\b{filter}\b", vp_neg):
# raise gr.Error("Please try again with a different visual preference")
if vp_pos != "":
vp_pos = vp_pos.split(", ")
random.shuffle(vp_pos)
vp_pos = ", ".join(vp_pos)
if vp_neg != "":
vp_neg = vp_neg.split(", ")
random.shuffle(vp_neg)
vp_neg = ", ".join(vp_neg)
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator().manual_seed(seed)
if prompt is None:
gr.Warning("Prompt is empty: a random image will be generated.")
prompt = ""
image = pipe(prompt=prompt,
num_inference_steps=num_inference_steps,
vp_pos=vp_pos,
vp_neg=vp_neg,
vp_degree_pos=slider,
vp_degree_neg=slider,
generator=generator
).images[0]
global example_prompts, examples
if prompt in example_prompts:
while example_prompts[0] != prompt:
example_prompts.append(example_prompts[0])
example_prompts = example_prompts[1:]
example_prompt = gr.Markdown(f"Prompt: {example_prompts[0]}")
if len(examples[example_prompts[0]]) == 10:
examples[example_prompts[0]] = examples[example_prompts[0]][:-1]
examples[example_prompts[0]].append(image)
gallery = gr.Gallery(
value=examples[example_prompts[0]],
label="",
show_label=False,
columns=[5],
rows=[2],
object_fit="contain",
height=500)
return image, example_prompt, gallery
def change_vp(extract_vp):
return
def upload_file(files):
global mioo
file_path = [file.name for file in files][0]
comment_images = [file_path] + comment_images
next_comment = ""
return gr.Image(value=mioo[0], label=f"image {0+1}/{len(mioo)}", show_label=True), gr.Text(label="Comment", show_label=False, lines=4, max_lines=5, placeholder="Enter your comment. The more detailed the better.", value=next_comment, container=False)
def next_prompt():
global example_prompts, examples
example_prompts.append(example_prompts[0])
example_prompts = example_prompts[1:]
example_prompt = gr.Markdown(f"Prompt: {example_prompts[0]}")
gallery = gr.Gallery(
value=examples[example_prompts[0]],
label="",
show_label=False,
columns=[5],
rows=[2],
object_fit="contain",
height=500)
return example_prompt, gallery
def previous_prompt():
global example_prompts, examples
example_prompts = example_prompts[::-1]
example_prompts.append(example_prompts[0])
example_prompts = example_prompts[1:]
example_prompts = example_prompts[::-1]
example_prompt = gr.Markdown(f"Prompt: {example_prompts[0]}")
gallery = gr.Gallery(
value=examples[example_prompts[0]],
label="",
show_label=False,
columns=[5],
rows=[2],
object_fit="contain",
height=500)
return example_prompt, gallery
###############################################
with gr.Column(elem_id="title-container"):
gr.Markdown(f"""
# **ViPer: Visual Personalization of Generative Models via Individual Preference Learning**
\n
\n
\n
""")
gr.Markdown(f"""
\nViPer is a personalization method that extracts individual preferences by asking users to comment on a few images, explaining their likes and dislikes. These preferences then guide a text-to-image model to produce images tailored to the individual's tastes.
\n
\n
\n
""")
with gr.Row(elem_id="main-container"):
with gr.Column(elem_id="col-container"):
gr.Markdown(f"""
## Step 1: Extracting visual preference from comments on images
"""
)
gr.Markdown("Please write your comments on the images below, explaining why you like or dislike each one from an artistic perspective. Comment on a mix of images: some that you like and some that you dislike. Focus on images that evoke strong reactions, whether positive or negative, and skip those that don't affect you much. More detailed comments will help us provide more personalized results. We recommend commenting on at least 8 images. If none of the provided images interest you, you can upload your own images.")
with gr.Accordion("Examples of Effective Comments", open=False):
example_comment_1 = gr.Textbox(
label="Example 1",
lines=2,
value="I don't like this at all. The beige colors bother me. It's so minimal and boring. The texture feels too shallow.",
)
example_comment_2 = gr.Textbox(
label="Example 2",
lines=4,
value="I adore the blue and greenish-blue palette, blue Dianne, and dark colors of this image. I also appreciate the Hergé inspiration in this artwork. However, I would have preferred a more complex and adventurous concept rather than a simple landscape. I wish it was more surreal and creepy.",
)
comment_image = gr.Image(value=mioo[0], label=f"image {0+1}/{len(mioo)}", show_label=True)
comment = gr.Text(
label="Comment",
show_label=False,
lines=4,
max_lines=5,
placeholder="Enter your comment. The more detailed the better.",
container=False,
)
with gr.Row():
previous_image_botton = gr.Button("⬅ Previous image", scale=0)
submit_comment_button = gr.Button("Submit comment", scale=0)
next_image_botton = gr.Button("Skip image ➡", scale=0)
file_output = gr.File(visible=False)
with gr.Row():
upload_button = gr.UploadButton("Click to upload images 📤", file_types=["image"], file_count="multiple")
clear_botton = gr.Button("Clear comments 🗑", interactive=False)
with gr.Accordion("Enter Claude API (optional)", open=False):
gr.Markdown("By default, we extract visual preferences from user comments using a fine-tuned HuggingFaceM4/idefics2-8b model. Optionally, you can experiment with using claude-3-5-sonnet for visual preference extraction by entering your API key below.")
with gr.Row():
api = gr.Text(
max_lines=1,
placeholder="Enter your API",
container=False,
)
api_button = gr.Button("Enter", scale=0)
extract_vp_botton = gr.Button(f"Extract visual preference from {0} comments", interactive=False, variant="primary")
with gr.Column(elem_id="gen-container"):
positive_extracted_vp = gr.Textbox(
label="Liked visual attributes",
lines=3,
value="",
)
negative_extracted_vp = gr.Textbox(
label="Disliked visual attributes",
lines=1,
value="",
)
gr.Markdown(f"""
Hint: You can edit your visual preference in case of hallucinations.
"""
)
gr.Markdown(f"""
## Step 2: Personalized image generation (using Stable Diffusion XL)
Generate personalized images using the visual preference extracted from your comments by entering a prompt below! You can adjust the personalization degree to generate results that are more or less personalized and diverse.
""")
slider = gr.Slider(value=0.85, minimum=0, maximum=1, label="Personalization degree", interactive=True)
with gr.Row():
prompt = gr.Dropdown(
example_prompts, label="Prompt", info="Enter your prompt or choose an example prompt from the dropdown.", allow_custom_value=True, multiselect=False, show_label=False
)
run_button = gr.Button("Run personalized generation", scale=0, interactive=True, variant="primary")
result = gr.Image(label="Result", show_label=False, interactive=False)
with gr.Accordion("Advanced Settings", open=False):
with gr.Row():
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=1000,
step=1,
value=0,
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=50,
step=1,
value=40,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row(elem_id="main-container"):
with gr.Accordion("Images generated from the example prompts, but with different extracted preferences. The first image shows the non-personalized baseline generation.", open=True):
example_prompt = gr.Markdown(f"Prompt: {example_prompts[0]}")
gallery = gr.Gallery(
value=examples[example_prompts[0]],
label="",
show_label=False,
columns=[5],
rows=[2],
object_fit="contain",
height=500)
with gr.Row():
pre_prompt_button = gr.Button("⬅ Previous prompt", scale=1, interactive=True)
next_prompt_button = gr.Button("Next prompt ➡", scale=1, interactive=True)
submit_comment_button.click(
fn = submit_comment,
inputs = [comment, comments, comment_images, image_index],
outputs = [comment_image, comment, extract_vp_botton, clear_botton, comments, comment_images, image_index]
)
previous_image_botton.click(
fn = previous_image,
inputs = [comments, comment_images, image_index],
outputs = [comment_image, comment, comments, comment_images, image_index]
)
next_image_botton.click(
fn = next_image,
inputs = [comments, comment_images, image_index],
outputs = [comment_image, comment, comments, comment_images, image_index]
)
extract_vp_botton.click(
fn = extract_vp,
inputs = [comments],
outputs = [positive_extracted_vp, negative_extracted_vp, run_button, comments]
)
api_button.click(
fn = api_fn,
inputs = [api],
outputs = [],
)
run_button.click(
fn = generate_out,
inputs = [prompt, positive_extracted_vp, negative_extracted_vp, slider, example_prompt, gallery, num_inference_steps, seed, randomize_seed],
outputs = [result, example_prompt, gallery],
)
positive_extracted_vp.change(
fn = change_vp,
inputs = [positive_extracted_vp],
outputs = [],
)
negative_extracted_vp.change(
fn = change_vp,
inputs = [negative_extracted_vp],
outputs = [],
)
clear_botton.click(
fn = clear_comments,
inputs = [comments],
outputs = [extract_vp_botton, clear_botton, comments]
)
next_prompt_button.click(
fn = next_prompt,
inputs = [],
outputs = [example_prompt, gallery]
)
pre_prompt_button.click(
fn = previous_prompt,
inputs = [],
outputs = [example_prompt, gallery]
)
upload_button.upload(
upload_file,
upload_button,
[comment_image, comment]
)
demo.launch(share=True) |