File size: 4,275 Bytes
0aaa1f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
# coding=utf-8
# Copyright 2023 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import torch
import torch.nn.functional as F
from torch import nn

from ..utils import USE_PEFT_BACKEND
from .lora import LoRACompatibleLinear


ACTIVATION_FUNCTIONS = {
    "swish": nn.SiLU(),
    "silu": nn.SiLU(),
    "mish": nn.Mish(),
    "gelu": nn.GELU(),
    "relu": nn.ReLU(),
}


def get_activation(act_fn: str) -> nn.Module:
    """Helper function to get activation function from string.

    Args:
        act_fn (str): Name of activation function.

    Returns:
        nn.Module: Activation function.
    """

    act_fn = act_fn.lower()
    if act_fn in ACTIVATION_FUNCTIONS:
        return ACTIVATION_FUNCTIONS[act_fn]
    else:
        raise ValueError(f"Unsupported activation function: {act_fn}")


class GELU(nn.Module):
    r"""
    GELU activation function with tanh approximation support with `approximate="tanh"`.

    Parameters:
        dim_in (`int`): The number of channels in the input.
        dim_out (`int`): The number of channels in the output.
        approximate (`str`, *optional*, defaults to `"none"`): If `"tanh"`, use tanh approximation.
        bias (`bool`, defaults to True): Whether to use a bias in the linear layer.
    """

    def __init__(self, dim_in: int, dim_out: int, approximate: str = "none", bias: bool = True):
        super().__init__()
        self.proj = nn.Linear(dim_in, dim_out, bias=bias)
        self.approximate = approximate

    def gelu(self, gate: torch.Tensor) -> torch.Tensor:
        if gate.device.type != "mps":
            return F.gelu(gate, approximate=self.approximate)
        # mps: gelu is not implemented for float16
        return F.gelu(gate.to(dtype=torch.float32), approximate=self.approximate).to(dtype=gate.dtype)

    def forward(self, hidden_states):
        hidden_states = self.proj(hidden_states)
        hidden_states = self.gelu(hidden_states)
        return hidden_states


class GEGLU(nn.Module):
    r"""
    A [variant](https://arxiv.org/abs/2002.05202) of the gated linear unit activation function.

    Parameters:
        dim_in (`int`): The number of channels in the input.
        dim_out (`int`): The number of channels in the output.
        bias (`bool`, defaults to True): Whether to use a bias in the linear layer.
    """

    def __init__(self, dim_in: int, dim_out: int, bias: bool = True):
        super().__init__()
        linear_cls = LoRACompatibleLinear if not USE_PEFT_BACKEND else nn.Linear

        self.proj = linear_cls(dim_in, dim_out * 2, bias=bias)

    def gelu(self, gate: torch.Tensor) -> torch.Tensor:
        if gate.device.type != "mps":
            return F.gelu(gate)
        # mps: gelu is not implemented for float16
        return F.gelu(gate.to(dtype=torch.float32)).to(dtype=gate.dtype)

    def forward(self, hidden_states, scale: float = 1.0):
        args = () if USE_PEFT_BACKEND else (scale,)
        hidden_states, gate = self.proj(hidden_states, *args).chunk(2, dim=-1)
        return hidden_states * self.gelu(gate)


class ApproximateGELU(nn.Module):
    r"""
    The approximate form of the Gaussian Error Linear Unit (GELU). For more details, see section 2 of this
    [paper](https://arxiv.org/abs/1606.08415).

    Parameters:
        dim_in (`int`): The number of channels in the input.
        dim_out (`int`): The number of channels in the output.
        bias (`bool`, defaults to True): Whether to use a bias in the linear layer.
    """

    def __init__(self, dim_in: int, dim_out: int, bias: bool = True):
        super().__init__()
        self.proj = nn.Linear(dim_in, dim_out, bias=bias)

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        x = self.proj(x)
        return x * torch.sigmoid(1.702 * x)