File size: 68,634 Bytes
0aaa1f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
import inspect
from dataclasses import dataclass
from typing import Callable, List, Optional, Union

import numpy as np
import PIL.Image
import torch
from transformers import (
    CLIPImageProcessor,
    CLIPTextModel,
    CLIPTokenizer,
    CLIPVisionModelWithProjection,
    GPT2Tokenizer,
)

from ...image_processor import VaeImageProcessor
from ...loaders import LoraLoaderMixin, TextualInversionLoaderMixin
from ...models import AutoencoderKL
from ...models.lora import adjust_lora_scale_text_encoder
from ...schedulers import KarrasDiffusionSchedulers
from ...utils import USE_PEFT_BACKEND, deprecate, logging, scale_lora_layers, unscale_lora_layers
from ...utils.outputs import BaseOutput
from ...utils.torch_utils import randn_tensor
from ..pipeline_utils import DiffusionPipeline
from .modeling_text_decoder import UniDiffuserTextDecoder
from .modeling_uvit import UniDiffuserModel


logger = logging.get_logger(__name__)  # pylint: disable=invalid-name


# New BaseOutput child class for joint image-text output
@dataclass
class ImageTextPipelineOutput(BaseOutput):
    """
    Output class for joint image-text pipelines.

    Args:
        images (`List[PIL.Image.Image]` or `np.ndarray`)
            List of denoised PIL images of length `batch_size` or NumPy array of shape `(batch_size, height, width,
            num_channels)`.
        text (`List[str]` or `List[List[str]]`)
            List of generated text strings of length `batch_size` or a list of list of strings whose outer list has
            length `batch_size`.
    """

    images: Optional[Union[List[PIL.Image.Image], np.ndarray]]
    text: Optional[Union[List[str], List[List[str]]]]


class UniDiffuserPipeline(DiffusionPipeline):
    r"""
    Pipeline for a bimodal image-text model which supports unconditional text and image generation, text-conditioned
    image generation, image-conditioned text generation, and joint image-text generation.

    This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods
    implemented for all pipelines (downloading, saving, running on a particular device, etc.).

    Args:
        vae ([`AutoencoderKL`]):
            Variational Auto-Encoder (VAE) model to encode and decode images to and from latent representations. This
            is part of the UniDiffuser image representation along with the CLIP vision encoding.
        text_encoder ([`CLIPTextModel`]):
            Frozen text-encoder ([clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14)).
        image_encoder ([`CLIPVisionModel`]):
            A [`~transformers.CLIPVisionModel`] to encode images as part of its image representation along with the VAE
            latent representation.
        image_processor ([`CLIPImageProcessor`]):
            [`~transformers.CLIPImageProcessor`] to preprocess an image before CLIP encoding it with `image_encoder`.
        clip_tokenizer ([`CLIPTokenizer`]):
             A [`~transformers.CLIPTokenizer`] to tokenize the prompt before encoding it with `text_encoder`.
        text_decoder ([`UniDiffuserTextDecoder`]):
            Frozen text decoder. This is a GPT-style model which is used to generate text from the UniDiffuser
            embedding.
        text_tokenizer ([`GPT2Tokenizer`]):
            A [`~transformers.GPT2Tokenizer`] to decode text for text generation; used along with the `text_decoder`.
        unet ([`UniDiffuserModel`]):
            A [U-ViT](https://github.com/baofff/U-ViT) model with UNNet-style skip connections between transformer
            layers to denoise the encoded image latents.
        scheduler ([`SchedulerMixin`]):
            A scheduler to be used in combination with `unet` to denoise the encoded image and/or text latents. The
            original UniDiffuser paper uses the [`DPMSolverMultistepScheduler`] scheduler.
    """

    # TODO: support for moving submodules for components with enable_model_cpu_offload
    model_cpu_offload_seq = "text_encoder->image_encoder->unet->vae->text_decoder"

    def __init__(
        self,
        vae: AutoencoderKL,
        text_encoder: CLIPTextModel,
        image_encoder: CLIPVisionModelWithProjection,
        clip_image_processor: CLIPImageProcessor,
        clip_tokenizer: CLIPTokenizer,
        text_decoder: UniDiffuserTextDecoder,
        text_tokenizer: GPT2Tokenizer,
        unet: UniDiffuserModel,
        scheduler: KarrasDiffusionSchedulers,
    ):
        super().__init__()

        if text_encoder.config.hidden_size != text_decoder.prefix_inner_dim:
            raise ValueError(
                f"The text encoder hidden size and text decoder prefix inner dim must be the same, but"
                f" `text_encoder.config.hidden_size`: {text_encoder.config.hidden_size} and `text_decoder.prefix_inner_dim`: {text_decoder.prefix_inner_dim}"
            )

        self.register_modules(
            vae=vae,
            text_encoder=text_encoder,
            image_encoder=image_encoder,
            clip_image_processor=clip_image_processor,
            clip_tokenizer=clip_tokenizer,
            text_decoder=text_decoder,
            text_tokenizer=text_tokenizer,
            unet=unet,
            scheduler=scheduler,
        )

        self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
        self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)

        self.num_channels_latents = vae.config.latent_channels
        self.text_encoder_seq_len = text_encoder.config.max_position_embeddings
        self.text_encoder_hidden_size = text_encoder.config.hidden_size
        self.image_encoder_projection_dim = image_encoder.config.projection_dim
        self.unet_resolution = unet.config.sample_size

        self.text_intermediate_dim = self.text_encoder_hidden_size
        if self.text_decoder.prefix_hidden_dim is not None:
            self.text_intermediate_dim = self.text_decoder.prefix_hidden_dim

        self.mode = None

        # TODO: handle safety checking?
        self.safety_checker = None

    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.enable_vae_slicing
    def enable_vae_slicing(self):
        r"""
        Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to
        compute decoding in several steps. This is useful to save some memory and allow larger batch sizes.
        """
        self.vae.enable_slicing()

    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.disable_vae_slicing
    def disable_vae_slicing(self):
        r"""
        Disable sliced VAE decoding. If `enable_vae_slicing` was previously enabled, this method will go back to
        computing decoding in one step.
        """
        self.vae.disable_slicing()

    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.enable_vae_tiling
    def enable_vae_tiling(self):
        r"""
        Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to
        compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow
        processing larger images.
        """
        self.vae.enable_tiling()

    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.disable_vae_tiling
    def disable_vae_tiling(self):
        r"""
        Disable tiled VAE decoding. If `enable_vae_tiling` was previously enabled, this method will go back to
        computing decoding in one step.
        """
        self.vae.disable_tiling()

    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
    def prepare_extra_step_kwargs(self, generator, eta):
        # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
        # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
        # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
        # and should be between [0, 1]

        accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
        extra_step_kwargs = {}
        if accepts_eta:
            extra_step_kwargs["eta"] = eta

        # check if the scheduler accepts generator
        accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
        if accepts_generator:
            extra_step_kwargs["generator"] = generator
        return extra_step_kwargs

    def _infer_mode(self, prompt, prompt_embeds, image, latents, prompt_latents, vae_latents, clip_latents):
        r"""
        Infer the generation task ('mode') from the inputs to `__call__`. If the mode has been manually set, the set
        mode will be used.
        """
        prompt_available = (prompt is not None) or (prompt_embeds is not None)
        image_available = image is not None
        input_available = prompt_available or image_available

        prompt_latents_available = prompt_latents is not None
        vae_latents_available = vae_latents is not None
        clip_latents_available = clip_latents is not None
        full_latents_available = latents is not None
        image_latents_available = vae_latents_available and clip_latents_available
        all_indv_latents_available = prompt_latents_available and image_latents_available

        if self.mode is not None:
            # Preferentially use the mode set by the user
            mode = self.mode
        elif prompt_available:
            mode = "text2img"
        elif image_available:
            mode = "img2text"
        else:
            # Neither prompt nor image supplied, infer based on availability of latents
            if full_latents_available or all_indv_latents_available:
                mode = "joint"
            elif prompt_latents_available:
                mode = "text"
            elif image_latents_available:
                mode = "img"
            else:
                # No inputs or latents available
                mode = "joint"

        # Give warnings for ambiguous cases
        if self.mode is None and prompt_available and image_available:
            logger.warning(
                f"You have supplied both a text prompt and image to the pipeline and mode has not been set manually,"
                f" defaulting to mode '{mode}'."
            )

        if self.mode is None and not input_available:
            if vae_latents_available != clip_latents_available:
                # Exactly one of vae_latents and clip_latents is supplied
                logger.warning(
                    f"You have supplied exactly one of `vae_latents` and `clip_latents`, whereas either both or none"
                    f" are expected to be supplied. Defaulting to mode '{mode}'."
                )
            elif not prompt_latents_available and not vae_latents_available and not clip_latents_available:
                # No inputs or latents supplied
                logger.warning(
                    f"No inputs or latents have been supplied, and mode has not been manually set,"
                    f" defaulting to mode '{mode}'."
                )

        return mode

    # Functions to manually set the mode
    def set_text_mode(self):
        r"""Manually set the generation mode to unconditional ("marginal") text generation."""
        self.mode = "text"

    def set_image_mode(self):
        r"""Manually set the generation mode to unconditional ("marginal") image generation."""
        self.mode = "img"

    def set_text_to_image_mode(self):
        r"""Manually set the generation mode to text-conditioned image generation."""
        self.mode = "text2img"

    def set_image_to_text_mode(self):
        r"""Manually set the generation mode to image-conditioned text generation."""
        self.mode = "img2text"

    def set_joint_mode(self):
        r"""Manually set the generation mode to unconditional joint image-text generation."""
        self.mode = "joint"

    def reset_mode(self):
        r"""Removes a manually set mode; after calling this, the pipeline will infer the mode from inputs."""
        self.mode = None

    def _infer_batch_size(
        self,
        mode,
        prompt,
        prompt_embeds,
        image,
        num_images_per_prompt,
        num_prompts_per_image,
        latents,
        prompt_latents,
        vae_latents,
        clip_latents,
    ):
        r"""Infers the batch size and multiplier depending on mode and supplied arguments to `__call__`."""
        if num_images_per_prompt is None:
            num_images_per_prompt = 1
        if num_prompts_per_image is None:
            num_prompts_per_image = 1

        assert num_images_per_prompt > 0, "num_images_per_prompt must be a positive integer"
        assert num_prompts_per_image > 0, "num_prompts_per_image must be a positive integer"

        if mode in ["text2img"]:
            if prompt is not None and isinstance(prompt, str):
                batch_size = 1
            elif prompt is not None and isinstance(prompt, list):
                batch_size = len(prompt)
            else:
                # Either prompt or prompt_embeds must be present for text2img.
                batch_size = prompt_embeds.shape[0]
            multiplier = num_images_per_prompt
        elif mode in ["img2text"]:
            if isinstance(image, PIL.Image.Image):
                batch_size = 1
            else:
                # Image must be available and type either PIL.Image.Image or torch.FloatTensor.
                # Not currently supporting something like image_embeds.
                batch_size = image.shape[0]
            multiplier = num_prompts_per_image
        elif mode in ["img"]:
            if vae_latents is not None:
                batch_size = vae_latents.shape[0]
            elif clip_latents is not None:
                batch_size = clip_latents.shape[0]
            else:
                batch_size = 1
            multiplier = num_images_per_prompt
        elif mode in ["text"]:
            if prompt_latents is not None:
                batch_size = prompt_latents.shape[0]
            else:
                batch_size = 1
            multiplier = num_prompts_per_image
        elif mode in ["joint"]:
            if latents is not None:
                batch_size = latents.shape[0]
            elif prompt_latents is not None:
                batch_size = prompt_latents.shape[0]
            elif vae_latents is not None:
                batch_size = vae_latents.shape[0]
            elif clip_latents is not None:
                batch_size = clip_latents.shape[0]
            else:
                batch_size = 1

            if num_images_per_prompt == num_prompts_per_image:
                multiplier = num_images_per_prompt
            else:
                multiplier = min(num_images_per_prompt, num_prompts_per_image)
                logger.warning(
                    f"You are using mode `{mode}` and `num_images_per_prompt`: {num_images_per_prompt} and"
                    f" num_prompts_per_image: {num_prompts_per_image} are not equal. Using batch size equal to"
                    f" `min(num_images_per_prompt, num_prompts_per_image) = {batch_size}."
                )
        return batch_size, multiplier

    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._encode_prompt
    def _encode_prompt(
        self,
        prompt,
        device,
        num_images_per_prompt,
        do_classifier_free_guidance,
        negative_prompt=None,
        prompt_embeds: Optional[torch.FloatTensor] = None,
        negative_prompt_embeds: Optional[torch.FloatTensor] = None,
        lora_scale: Optional[float] = None,
        **kwargs,
    ):
        deprecation_message = "`_encode_prompt()` is deprecated and it will be removed in a future version. Use `encode_prompt()` instead. Also, be aware that the output format changed from a concatenated tensor to a tuple."
        deprecate("_encode_prompt()", "1.0.0", deprecation_message, standard_warn=False)

        prompt_embeds_tuple = self.encode_prompt(
            prompt=prompt,
            device=device,
            num_images_per_prompt=num_images_per_prompt,
            do_classifier_free_guidance=do_classifier_free_guidance,
            negative_prompt=negative_prompt,
            prompt_embeds=prompt_embeds,
            negative_prompt_embeds=negative_prompt_embeds,
            lora_scale=lora_scale,
            **kwargs,
        )

        # concatenate for backwards comp
        prompt_embeds = torch.cat([prompt_embeds_tuple[1], prompt_embeds_tuple[0]])

        return prompt_embeds

    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.encode_prompt with self.tokenizer->self.clip_tokenizer
    def encode_prompt(
        self,
        prompt,
        device,
        num_images_per_prompt,
        do_classifier_free_guidance,
        negative_prompt=None,
        prompt_embeds: Optional[torch.FloatTensor] = None,
        negative_prompt_embeds: Optional[torch.FloatTensor] = None,
        lora_scale: Optional[float] = None,
        clip_skip: Optional[int] = None,
    ):
        r"""
        Encodes the prompt into text encoder hidden states.

        Args:
            prompt (`str` or `List[str]`, *optional*):
                prompt to be encoded
            device: (`torch.device`):
                torch device
            num_images_per_prompt (`int`):
                number of images that should be generated per prompt
            do_classifier_free_guidance (`bool`):
                whether to use classifier free guidance or not
            negative_prompt (`str` or `List[str]`, *optional*):
                The prompt or prompts not to guide the image generation. If not defined, one has to pass
                `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
                less than `1`).
            prompt_embeds (`torch.FloatTensor`, *optional*):
                Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
                provided, text embeddings will be generated from `prompt` input argument.
            negative_prompt_embeds (`torch.FloatTensor`, *optional*):
                Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
                weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
                argument.
            lora_scale (`float`, *optional*):
                A LoRA scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
            clip_skip (`int`, *optional*):
                Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
                the output of the pre-final layer will be used for computing the prompt embeddings.
        """
        # set lora scale so that monkey patched LoRA
        # function of text encoder can correctly access it
        if lora_scale is not None and isinstance(self, LoraLoaderMixin):
            self._lora_scale = lora_scale

            # dynamically adjust the LoRA scale
            if not USE_PEFT_BACKEND:
                adjust_lora_scale_text_encoder(self.text_encoder, lora_scale)
            else:
                scale_lora_layers(self.text_encoder, lora_scale)

        if prompt is not None and isinstance(prompt, str):
            batch_size = 1
        elif prompt is not None and isinstance(prompt, list):
            batch_size = len(prompt)
        else:
            batch_size = prompt_embeds.shape[0]

        if prompt_embeds is None:
            # textual inversion: procecss multi-vector tokens if necessary
            if isinstance(self, TextualInversionLoaderMixin):
                prompt = self.maybe_convert_prompt(prompt, self.clip_tokenizer)

            text_inputs = self.clip_tokenizer(
                prompt,
                padding="max_length",
                max_length=self.clip_tokenizer.model_max_length,
                truncation=True,
                return_tensors="pt",
            )
            text_input_ids = text_inputs.input_ids
            untruncated_ids = self.clip_tokenizer(prompt, padding="longest", return_tensors="pt").input_ids

            if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
                text_input_ids, untruncated_ids
            ):
                removed_text = self.clip_tokenizer.batch_decode(
                    untruncated_ids[:, self.clip_tokenizer.model_max_length - 1 : -1]
                )
                logger.warning(
                    "The following part of your input was truncated because CLIP can only handle sequences up to"
                    f" {self.clip_tokenizer.model_max_length} tokens: {removed_text}"
                )

            if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
                attention_mask = text_inputs.attention_mask.to(device)
            else:
                attention_mask = None

            if clip_skip is None:
                prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=attention_mask)
                prompt_embeds = prompt_embeds[0]
            else:
                prompt_embeds = self.text_encoder(
                    text_input_ids.to(device), attention_mask=attention_mask, output_hidden_states=True
                )
                # Access the `hidden_states` first, that contains a tuple of
                # all the hidden states from the encoder layers. Then index into
                # the tuple to access the hidden states from the desired layer.
                prompt_embeds = prompt_embeds[-1][-(clip_skip + 1)]
                # We also need to apply the final LayerNorm here to not mess with the
                # representations. The `last_hidden_states` that we typically use for
                # obtaining the final prompt representations passes through the LayerNorm
                # layer.
                prompt_embeds = self.text_encoder.text_model.final_layer_norm(prompt_embeds)

        if self.text_encoder is not None:
            prompt_embeds_dtype = self.text_encoder.dtype
        elif self.unet is not None:
            prompt_embeds_dtype = self.unet.dtype
        else:
            prompt_embeds_dtype = prompt_embeds.dtype

        prompt_embeds = prompt_embeds.to(dtype=prompt_embeds_dtype, device=device)

        bs_embed, seq_len, _ = prompt_embeds.shape
        # duplicate text embeddings for each generation per prompt, using mps friendly method
        prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
        prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)

        # get unconditional embeddings for classifier free guidance
        if do_classifier_free_guidance and negative_prompt_embeds is None:
            uncond_tokens: List[str]
            if negative_prompt is None:
                uncond_tokens = [""] * batch_size
            elif prompt is not None and type(prompt) is not type(negative_prompt):
                raise TypeError(
                    f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
                    f" {type(prompt)}."
                )
            elif isinstance(negative_prompt, str):
                uncond_tokens = [negative_prompt]
            elif batch_size != len(negative_prompt):
                raise ValueError(
                    f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
                    f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
                    " the batch size of `prompt`."
                )
            else:
                uncond_tokens = negative_prompt

            # textual inversion: procecss multi-vector tokens if necessary
            if isinstance(self, TextualInversionLoaderMixin):
                uncond_tokens = self.maybe_convert_prompt(uncond_tokens, self.clip_tokenizer)

            max_length = prompt_embeds.shape[1]
            uncond_input = self.clip_tokenizer(
                uncond_tokens,
                padding="max_length",
                max_length=max_length,
                truncation=True,
                return_tensors="pt",
            )

            if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
                attention_mask = uncond_input.attention_mask.to(device)
            else:
                attention_mask = None

            negative_prompt_embeds = self.text_encoder(
                uncond_input.input_ids.to(device),
                attention_mask=attention_mask,
            )
            negative_prompt_embeds = negative_prompt_embeds[0]

        if do_classifier_free_guidance:
            # duplicate unconditional embeddings for each generation per prompt, using mps friendly method
            seq_len = negative_prompt_embeds.shape[1]

            negative_prompt_embeds = negative_prompt_embeds.to(dtype=prompt_embeds_dtype, device=device)

            negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
            negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)

        if isinstance(self, LoraLoaderMixin) and USE_PEFT_BACKEND:
            # Retrieve the original scale by scaling back the LoRA layers
            unscale_lora_layers(self.text_encoder, lora_scale)

        return prompt_embeds, negative_prompt_embeds

    # Modified from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_instruct_pix2pix.StableDiffusionInstructPix2PixPipeline.prepare_image_latents
    # Add num_prompts_per_image argument, sample from autoencoder moment distribution
    def encode_image_vae_latents(
        self,
        image,
        batch_size,
        num_prompts_per_image,
        dtype,
        device,
        do_classifier_free_guidance,
        generator=None,
    ):
        if not isinstance(image, (torch.Tensor, PIL.Image.Image, list)):
            raise ValueError(
                f"`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(image)}"
            )

        image = image.to(device=device, dtype=dtype)

        batch_size = batch_size * num_prompts_per_image
        if isinstance(generator, list) and len(generator) != batch_size:
            raise ValueError(
                f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
                f" size of {batch_size}. Make sure the batch size matches the length of the generators."
            )

        if isinstance(generator, list):
            image_latents = [
                self.vae.encode(image[i : i + 1]).latent_dist.sample(generator=generator[i])
                * self.vae.config.scaling_factor
                for i in range(batch_size)
            ]
            image_latents = torch.cat(image_latents, dim=0)
        else:
            image_latents = self.vae.encode(image).latent_dist.sample(generator=generator)
            # Scale image_latents by the VAE's scaling factor
            image_latents = image_latents * self.vae.config.scaling_factor

        if batch_size > image_latents.shape[0] and batch_size % image_latents.shape[0] == 0:
            # expand image_latents for batch_size
            deprecation_message = (
                f"You have passed {batch_size} text prompts (`prompt`), but only {image_latents.shape[0]} initial"
                " images (`image`). Initial images are now duplicating to match the number of text prompts. Note"
                " that this behavior is deprecated and will be removed in a version 1.0.0. Please make sure to update"
                " your script to pass as many initial images as text prompts to suppress this warning."
            )
            deprecate("len(prompt) != len(image)", "1.0.0", deprecation_message, standard_warn=False)
            additional_image_per_prompt = batch_size // image_latents.shape[0]
            image_latents = torch.cat([image_latents] * additional_image_per_prompt, dim=0)
        elif batch_size > image_latents.shape[0] and batch_size % image_latents.shape[0] != 0:
            raise ValueError(
                f"Cannot duplicate `image` of batch size {image_latents.shape[0]} to {batch_size} text prompts."
            )
        else:
            image_latents = torch.cat([image_latents], dim=0)

        if do_classifier_free_guidance:
            uncond_image_latents = torch.zeros_like(image_latents)
            image_latents = torch.cat([image_latents, image_latents, uncond_image_latents], dim=0)

        return image_latents

    def encode_image_clip_latents(
        self,
        image,
        batch_size,
        num_prompts_per_image,
        dtype,
        device,
        generator=None,
    ):
        # Map image to CLIP embedding.
        if not isinstance(image, (torch.Tensor, PIL.Image.Image, list)):
            raise ValueError(
                f"`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(image)}"
            )

        preprocessed_image = self.clip_image_processor.preprocess(
            image,
            return_tensors="pt",
        )
        preprocessed_image = preprocessed_image.to(device=device, dtype=dtype)

        batch_size = batch_size * num_prompts_per_image
        if isinstance(generator, list):
            image_latents = [
                self.image_encoder(**preprocessed_image[i : i + 1]).image_embeds for i in range(batch_size)
            ]
            image_latents = torch.cat(image_latents, dim=0)
        else:
            image_latents = self.image_encoder(**preprocessed_image).image_embeds

        if batch_size > image_latents.shape[0] and batch_size % image_latents.shape[0] == 0:
            # expand image_latents for batch_size
            deprecation_message = (
                f"You have passed {batch_size} text prompts (`prompt`), but only {image_latents.shape[0]} initial"
                " images (`image`). Initial images are now duplicating to match the number of text prompts. Note"
                " that this behavior is deprecated and will be removed in a version 1.0.0. Please make sure to update"
                " your script to pass as many initial images as text prompts to suppress this warning."
            )
            deprecate("len(prompt) != len(image)", "1.0.0", deprecation_message, standard_warn=False)
            additional_image_per_prompt = batch_size // image_latents.shape[0]
            image_latents = torch.cat([image_latents] * additional_image_per_prompt, dim=0)
        elif batch_size > image_latents.shape[0] and batch_size % image_latents.shape[0] != 0:
            raise ValueError(
                f"Cannot duplicate `image` of batch size {image_latents.shape[0]} to {batch_size} text prompts."
            )
        else:
            image_latents = torch.cat([image_latents], dim=0)

        if isinstance(generator, list) and len(generator) != batch_size:
            raise ValueError(
                f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
                f" size of {batch_size}. Make sure the batch size matches the length of the generators."
            )

        return image_latents

    def prepare_text_latents(
        self, batch_size, num_images_per_prompt, seq_len, hidden_size, dtype, device, generator, latents=None
    ):
        # Prepare latents for the CLIP embedded prompt.
        shape = (batch_size * num_images_per_prompt, seq_len, hidden_size)
        if isinstance(generator, list) and len(generator) != batch_size:
            raise ValueError(
                f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
                f" size of {batch_size}. Make sure the batch size matches the length of the generators."
            )

        if latents is None:
            latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
        else:
            # latents is assumed to have shace (B, L, D)
            latents = latents.repeat(num_images_per_prompt, 1, 1)
            latents = latents.to(device=device, dtype=dtype)

        # scale the initial noise by the standard deviation required by the scheduler
        latents = latents * self.scheduler.init_noise_sigma
        return latents

    # Modified from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents
    # Rename prepare_latents -> prepare_image_vae_latents and add num_prompts_per_image argument.
    def prepare_image_vae_latents(
        self,
        batch_size,
        num_prompts_per_image,
        num_channels_latents,
        height,
        width,
        dtype,
        device,
        generator,
        latents=None,
    ):
        shape = (
            batch_size * num_prompts_per_image,
            num_channels_latents,
            height // self.vae_scale_factor,
            width // self.vae_scale_factor,
        )
        if isinstance(generator, list) and len(generator) != batch_size:
            raise ValueError(
                f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
                f" size of {batch_size}. Make sure the batch size matches the length of the generators."
            )

        if latents is None:
            latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
        else:
            # latents is assumed to have shape (B, C, H, W)
            latents = latents.repeat(num_prompts_per_image, 1, 1, 1)
            latents = latents.to(device=device, dtype=dtype)

        # scale the initial noise by the standard deviation required by the scheduler
        latents = latents * self.scheduler.init_noise_sigma
        return latents

    def prepare_image_clip_latents(
        self, batch_size, num_prompts_per_image, clip_img_dim, dtype, device, generator, latents=None
    ):
        # Prepare latents for the CLIP embedded image.
        shape = (batch_size * num_prompts_per_image, 1, clip_img_dim)
        if isinstance(generator, list) and len(generator) != batch_size:
            raise ValueError(
                f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
                f" size of {batch_size}. Make sure the batch size matches the length of the generators."
            )

        if latents is None:
            latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
        else:
            # latents is assumed to have shape (B, L, D)
            latents = latents.repeat(num_prompts_per_image, 1, 1)
            latents = latents.to(device=device, dtype=dtype)

        # scale the initial noise by the standard deviation required by the scheduler
        latents = latents * self.scheduler.init_noise_sigma
        return latents

    def decode_text_latents(self, text_latents, device):
        output_token_list, seq_lengths = self.text_decoder.generate_captions(
            text_latents, self.text_tokenizer.eos_token_id, device=device
        )
        output_list = output_token_list.cpu().numpy()
        generated_text = [
            self.text_tokenizer.decode(output[: int(length)], skip_special_tokens=True)
            for output, length in zip(output_list, seq_lengths)
        ]
        return generated_text

    def _split(self, x, height, width):
        r"""
        Splits a flattened embedding x of shape (B, C * H * W + clip_img_dim) into two tensors of shape (B, C, H, W)
        and (B, 1, clip_img_dim)
        """
        batch_size = x.shape[0]
        latent_height = height // self.vae_scale_factor
        latent_width = width // self.vae_scale_factor
        img_vae_dim = self.num_channels_latents * latent_height * latent_width

        img_vae, img_clip = x.split([img_vae_dim, self.image_encoder_projection_dim], dim=1)

        img_vae = torch.reshape(img_vae, (batch_size, self.num_channels_latents, latent_height, latent_width))
        img_clip = torch.reshape(img_clip, (batch_size, 1, self.image_encoder_projection_dim))
        return img_vae, img_clip

    def _combine(self, img_vae, img_clip):
        r"""
        Combines a latent iamge img_vae of shape (B, C, H, W) and a CLIP-embedded image img_clip of shape (B, 1,
        clip_img_dim) into a single tensor of shape (B, C * H * W + clip_img_dim).
        """
        img_vae = torch.reshape(img_vae, (img_vae.shape[0], -1))
        img_clip = torch.reshape(img_clip, (img_clip.shape[0], -1))
        return torch.concat([img_vae, img_clip], dim=-1)

    def _split_joint(self, x, height, width):
        r"""
        Splits a flattened embedding x of shape (B, C * H * W + clip_img_dim + text_seq_len * text_dim] into (img_vae,
        img_clip, text) where img_vae is of shape (B, C, H, W), img_clip is of shape (B, 1, clip_img_dim), and text is
        of shape (B, text_seq_len, text_dim).
        """
        batch_size = x.shape[0]
        latent_height = height // self.vae_scale_factor
        latent_width = width // self.vae_scale_factor
        img_vae_dim = self.num_channels_latents * latent_height * latent_width
        text_dim = self.text_encoder_seq_len * self.text_intermediate_dim

        img_vae, img_clip, text = x.split([img_vae_dim, self.image_encoder_projection_dim, text_dim], dim=1)

        img_vae = torch.reshape(img_vae, (batch_size, self.num_channels_latents, latent_height, latent_width))
        img_clip = torch.reshape(img_clip, (batch_size, 1, self.image_encoder_projection_dim))
        text = torch.reshape(text, (batch_size, self.text_encoder_seq_len, self.text_intermediate_dim))
        return img_vae, img_clip, text

    def _combine_joint(self, img_vae, img_clip, text):
        r"""
        Combines a latent image img_vae of shape (B, C, H, W), a CLIP-embedded image img_clip of shape (B, L_img,
        clip_img_dim), and a text embedding text of shape (B, L_text, text_dim) into a single embedding x of shape (B,
        C * H * W + L_img * clip_img_dim + L_text * text_dim).
        """
        img_vae = torch.reshape(img_vae, (img_vae.shape[0], -1))
        img_clip = torch.reshape(img_clip, (img_clip.shape[0], -1))
        text = torch.reshape(text, (text.shape[0], -1))
        return torch.concat([img_vae, img_clip, text], dim=-1)

    def _get_noise_pred(
        self,
        mode,
        latents,
        t,
        prompt_embeds,
        img_vae,
        img_clip,
        max_timestep,
        data_type,
        guidance_scale,
        generator,
        device,
        height,
        width,
    ):
        r"""
        Gets the noise prediction using the `unet` and performs classifier-free guidance, if necessary.
        """
        if mode == "joint":
            # Joint text-image generation
            img_vae_latents, img_clip_latents, text_latents = self._split_joint(latents, height, width)

            img_vae_out, img_clip_out, text_out = self.unet(
                img_vae_latents, img_clip_latents, text_latents, timestep_img=t, timestep_text=t, data_type=data_type
            )

            x_out = self._combine_joint(img_vae_out, img_clip_out, text_out)

            if guidance_scale <= 1.0:
                return x_out

            # Classifier-free guidance
            img_vae_T = randn_tensor(img_vae.shape, generator=generator, device=device, dtype=img_vae.dtype)
            img_clip_T = randn_tensor(img_clip.shape, generator=generator, device=device, dtype=img_clip.dtype)
            text_T = randn_tensor(prompt_embeds.shape, generator=generator, device=device, dtype=prompt_embeds.dtype)

            _, _, text_out_uncond = self.unet(
                img_vae_T, img_clip_T, text_latents, timestep_img=max_timestep, timestep_text=t, data_type=data_type
            )

            img_vae_out_uncond, img_clip_out_uncond, _ = self.unet(
                img_vae_latents,
                img_clip_latents,
                text_T,
                timestep_img=t,
                timestep_text=max_timestep,
                data_type=data_type,
            )

            x_out_uncond = self._combine_joint(img_vae_out_uncond, img_clip_out_uncond, text_out_uncond)

            return guidance_scale * x_out + (1.0 - guidance_scale) * x_out_uncond
        elif mode == "text2img":
            # Text-conditioned image generation
            img_vae_latents, img_clip_latents = self._split(latents, height, width)

            img_vae_out, img_clip_out, text_out = self.unet(
                img_vae_latents, img_clip_latents, prompt_embeds, timestep_img=t, timestep_text=0, data_type=data_type
            )

            img_out = self._combine(img_vae_out, img_clip_out)

            if guidance_scale <= 1.0:
                return img_out

            # Classifier-free guidance
            text_T = randn_tensor(prompt_embeds.shape, generator=generator, device=device, dtype=prompt_embeds.dtype)

            img_vae_out_uncond, img_clip_out_uncond, text_out_uncond = self.unet(
                img_vae_latents,
                img_clip_latents,
                text_T,
                timestep_img=t,
                timestep_text=max_timestep,
                data_type=data_type,
            )

            img_out_uncond = self._combine(img_vae_out_uncond, img_clip_out_uncond)

            return guidance_scale * img_out + (1.0 - guidance_scale) * img_out_uncond
        elif mode == "img2text":
            # Image-conditioned text generation
            img_vae_out, img_clip_out, text_out = self.unet(
                img_vae, img_clip, latents, timestep_img=0, timestep_text=t, data_type=data_type
            )

            if guidance_scale <= 1.0:
                return text_out

            # Classifier-free guidance
            img_vae_T = randn_tensor(img_vae.shape, generator=generator, device=device, dtype=img_vae.dtype)
            img_clip_T = randn_tensor(img_clip.shape, generator=generator, device=device, dtype=img_clip.dtype)

            img_vae_out_uncond, img_clip_out_uncond, text_out_uncond = self.unet(
                img_vae_T, img_clip_T, latents, timestep_img=max_timestep, timestep_text=t, data_type=data_type
            )

            return guidance_scale * text_out + (1.0 - guidance_scale) * text_out_uncond
        elif mode == "text":
            # Unconditional ("marginal") text generation (no CFG)
            img_vae_out, img_clip_out, text_out = self.unet(
                img_vae, img_clip, latents, timestep_img=max_timestep, timestep_text=t, data_type=data_type
            )

            return text_out
        elif mode == "img":
            # Unconditional ("marginal") image generation (no CFG)
            img_vae_latents, img_clip_latents = self._split(latents, height, width)

            img_vae_out, img_clip_out, text_out = self.unet(
                img_vae_latents,
                img_clip_latents,
                prompt_embeds,
                timestep_img=t,
                timestep_text=max_timestep,
                data_type=data_type,
            )

            img_out = self._combine(img_vae_out, img_clip_out)
            return img_out

    def check_latents_shape(self, latents_name, latents, expected_shape):
        latents_shape = latents.shape
        expected_num_dims = len(expected_shape) + 1  # expected dimensions plus the batch dimension
        expected_shape_str = ", ".join(str(dim) for dim in expected_shape)
        if len(latents_shape) != expected_num_dims:
            raise ValueError(
                f"`{latents_name}` should have shape (batch_size, {expected_shape_str}), but the current shape"
                f" {latents_shape} has {len(latents_shape)} dimensions."
            )
        for i in range(1, expected_num_dims):
            if latents_shape[i] != expected_shape[i - 1]:
                raise ValueError(
                    f"`{latents_name}` should have shape (batch_size, {expected_shape_str}), but the current shape"
                    f" {latents_shape} has {latents_shape[i]} != {expected_shape[i - 1]} at dimension {i}."
                )

    def check_inputs(
        self,
        mode,
        prompt,
        image,
        height,
        width,
        callback_steps,
        negative_prompt=None,
        prompt_embeds=None,
        negative_prompt_embeds=None,
        latents=None,
        prompt_latents=None,
        vae_latents=None,
        clip_latents=None,
    ):
        # Check inputs before running the generative process.
        if height % self.vae_scale_factor != 0 or width % self.vae_scale_factor != 0:
            raise ValueError(
                f"`height` and `width` have to be divisible by {self.vae_scale_factor} but are {height} and {width}."
            )

        if (callback_steps is None) or (
            callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)
        ):
            raise ValueError(
                f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
                f" {type(callback_steps)}."
            )

        if mode == "text2img":
            if prompt is not None and prompt_embeds is not None:
                raise ValueError(
                    f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
                    " only forward one of the two."
                )
            elif prompt is None and prompt_embeds is None:
                raise ValueError(
                    "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
                )
            elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
                raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")

            if negative_prompt is not None and negative_prompt_embeds is not None:
                raise ValueError(
                    f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
                    f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
                )

            if prompt_embeds is not None and negative_prompt_embeds is not None:
                if prompt_embeds.shape != negative_prompt_embeds.shape:
                    raise ValueError(
                        "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
                        f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
                        f" {negative_prompt_embeds.shape}."
                    )

        if mode == "img2text":
            if image is None:
                raise ValueError("`img2text` mode requires an image to be provided.")

        # Check provided latents
        latent_height = height // self.vae_scale_factor
        latent_width = width // self.vae_scale_factor
        full_latents_available = latents is not None
        prompt_latents_available = prompt_latents is not None
        vae_latents_available = vae_latents is not None
        clip_latents_available = clip_latents is not None

        if full_latents_available:
            individual_latents_available = (
                prompt_latents is not None or vae_latents is not None or clip_latents is not None
            )
            if individual_latents_available:
                logger.warning(
                    "You have supplied both `latents` and at least one of `prompt_latents`, `vae_latents`, and"
                    " `clip_latents`. The value of `latents` will override the value of any individually supplied latents."
                )
            # Check shape of full latents
            img_vae_dim = self.num_channels_latents * latent_height * latent_width
            text_dim = self.text_encoder_seq_len * self.text_encoder_hidden_size
            latents_dim = img_vae_dim + self.image_encoder_projection_dim + text_dim
            latents_expected_shape = (latents_dim,)
            self.check_latents_shape("latents", latents, latents_expected_shape)

        # Check individual latent shapes, if present
        if prompt_latents_available:
            prompt_latents_expected_shape = (self.text_encoder_seq_len, self.text_encoder_hidden_size)
            self.check_latents_shape("prompt_latents", prompt_latents, prompt_latents_expected_shape)

        if vae_latents_available:
            vae_latents_expected_shape = (self.num_channels_latents, latent_height, latent_width)
            self.check_latents_shape("vae_latents", vae_latents, vae_latents_expected_shape)

        if clip_latents_available:
            clip_latents_expected_shape = (1, self.image_encoder_projection_dim)
            self.check_latents_shape("clip_latents", clip_latents, clip_latents_expected_shape)

        if mode in ["text2img", "img"] and vae_latents_available and clip_latents_available:
            if vae_latents.shape[0] != clip_latents.shape[0]:
                raise ValueError(
                    f"Both `vae_latents` and `clip_latents` are supplied, but their batch dimensions are not equal:"
                    f" {vae_latents.shape[0]} != {clip_latents.shape[0]}."
                )

        if mode == "joint" and prompt_latents_available and vae_latents_available and clip_latents_available:
            if prompt_latents.shape[0] != vae_latents.shape[0] or prompt_latents.shape[0] != clip_latents.shape[0]:
                raise ValueError(
                    f"All of `prompt_latents`, `vae_latents`, and `clip_latents` are supplied, but their batch"
                    f" dimensions are not equal: {prompt_latents.shape[0]} != {vae_latents.shape[0]}"
                    f" != {clip_latents.shape[0]}."
                )

    @torch.no_grad()
    def __call__(
        self,
        prompt: Optional[Union[str, List[str]]] = None,
        image: Optional[Union[torch.FloatTensor, PIL.Image.Image]] = None,
        height: Optional[int] = None,
        width: Optional[int] = None,
        data_type: Optional[int] = 1,
        num_inference_steps: int = 50,
        guidance_scale: float = 8.0,
        negative_prompt: Optional[Union[str, List[str]]] = None,
        num_images_per_prompt: Optional[int] = 1,
        num_prompts_per_image: Optional[int] = 1,
        eta: float = 0.0,
        generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
        latents: Optional[torch.FloatTensor] = None,
        prompt_latents: Optional[torch.FloatTensor] = None,
        vae_latents: Optional[torch.FloatTensor] = None,
        clip_latents: Optional[torch.FloatTensor] = None,
        prompt_embeds: Optional[torch.FloatTensor] = None,
        negative_prompt_embeds: Optional[torch.FloatTensor] = None,
        output_type: Optional[str] = "pil",
        return_dict: bool = True,
        callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
        callback_steps: int = 1,
    ):
        r"""
        The call function to the pipeline for generation.

        Args:
            prompt (`str` or `List[str]`, *optional*):
                The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`.
                Required for text-conditioned image generation (`text2img`) mode.
            image (`torch.FloatTensor` or `PIL.Image.Image`, *optional*):
                `Image` or tensor representing an image batch. Required for image-conditioned text generation
                (`img2text`) mode.
            height (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
                The height in pixels of the generated image.
            width (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
                The width in pixels of the generated image.
            data_type (`int`, *optional*, defaults to 1):
                The data type (either 0 or 1). Only used if you are loading a checkpoint which supports a data type
                embedding; this is added for compatibility with the
                [UniDiffuser-v1](https://huggingface.co/thu-ml/unidiffuser-v1) checkpoint.
            num_inference_steps (`int`, *optional*, defaults to 50):
                The number of denoising steps. More denoising steps usually lead to a higher quality image at the
                expense of slower inference.
            guidance_scale (`float`, *optional*, defaults to 8.0):
                A higher guidance scale value encourages the model to generate images closely linked to the text
                `prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`.
            negative_prompt (`str` or `List[str]`, *optional*):
                The prompt or prompts to guide what to not include in image generation. If not defined, you need to
                pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`). Used in
                text-conditioned image generation (`text2img`) mode.
            num_images_per_prompt (`int`, *optional*, defaults to 1):
                The number of images to generate per prompt. Used in `text2img` (text-conditioned image generation) and
                `img` mode. If the mode is joint and both `num_images_per_prompt` and `num_prompts_per_image` are
                supplied, `min(num_images_per_prompt, num_prompts_per_image)` samples are generated.
            num_prompts_per_image (`int`, *optional*, defaults to 1):
                The number of prompts to generate per image. Used in `img2text` (image-conditioned text generation) and
                `text` mode. If the mode is joint and both `num_images_per_prompt` and `num_prompts_per_image` are
                supplied, `min(num_images_per_prompt, num_prompts_per_image)` samples are generated.
            eta (`float`, *optional*, defaults to 0.0):
                Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies
                to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers.
            generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
                A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
                generation deterministic.
            latents (`torch.FloatTensor`, *optional*):
                Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for joint
                image-text generation. Can be used to tweak the same generation with different prompts. If not
                provided, a latents tensor is generated by sampling using the supplied random `generator`. This assumes
                a full set of VAE, CLIP, and text latents, if supplied, overrides the value of `prompt_latents`,
                `vae_latents`, and `clip_latents`.
            prompt_latents (`torch.FloatTensor`, *optional*):
                Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for text
                generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
                tensor is generated by sampling using the supplied random `generator`.
            vae_latents (`torch.FloatTensor`, *optional*):
                Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image
                generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
                tensor is generated by sampling using the supplied random `generator`.
            clip_latents (`torch.FloatTensor`, *optional*):
                Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image
                generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
                tensor is generated by sampling using the supplied random `generator`.
            prompt_embeds (`torch.FloatTensor`, *optional*):
                Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not
                provided, text embeddings are generated from the `prompt` input argument. Used in text-conditioned
                image generation (`text2img`) mode.
            negative_prompt_embeds (`torch.FloatTensor`, *optional*):
                Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
                not provided, `negative_prompt_embeds` are be generated from the `negative_prompt` input argument. Used
                in text-conditioned image generation (`text2img`) mode.
            output_type (`str`, *optional*, defaults to `"pil"`):
                The output format of the generated image. Choose between `PIL.Image` or `np.array`.
            return_dict (`bool`, *optional*, defaults to `True`):
                Whether or not to return a [`~pipelines.ImageTextPipelineOutput`] instead of a plain tuple.
            callback (`Callable`, *optional*):
                A function that calls every `callback_steps` steps during inference. The function is called with the
                following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
            callback_steps (`int`, *optional*, defaults to 1):
                The frequency at which the `callback` function is called. If not specified, the callback is called at
                every step.

        Returns:
            [`~pipelines.unidiffuser.ImageTextPipelineOutput`] or `tuple`:
                If `return_dict` is `True`, [`~pipelines.unidiffuser.ImageTextPipelineOutput`] is returned, otherwise a
                `tuple` is returned where the first element is a list with the generated images and the second element
                is a list of generated texts.
        """

        # 0. Default height and width to unet
        height = height or self.unet_resolution * self.vae_scale_factor
        width = width or self.unet_resolution * self.vae_scale_factor

        # 1. Check inputs
        # Recalculate mode for each call to the pipeline.
        mode = self._infer_mode(prompt, prompt_embeds, image, latents, prompt_latents, vae_latents, clip_latents)
        self.check_inputs(
            mode,
            prompt,
            image,
            height,
            width,
            callback_steps,
            negative_prompt,
            prompt_embeds,
            negative_prompt_embeds,
            latents,
            prompt_latents,
            vae_latents,
            clip_latents,
        )

        # 2. Define call parameters
        batch_size, multiplier = self._infer_batch_size(
            mode,
            prompt,
            prompt_embeds,
            image,
            num_images_per_prompt,
            num_prompts_per_image,
            latents,
            prompt_latents,
            vae_latents,
            clip_latents,
        )
        device = self._execution_device
        reduce_text_emb_dim = self.text_intermediate_dim < self.text_encoder_hidden_size or self.mode != "text2img"

        # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
        # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
        # corresponds to doing no classifier free guidance.
        # Note that this differs from the formulation in the unidiffusers paper!
        do_classifier_free_guidance = guidance_scale > 1.0

        # check if scheduler is in sigmas space
        # scheduler_is_in_sigma_space = hasattr(self.scheduler, "sigmas")

        # 3. Encode input prompt, if available; otherwise prepare text latents
        if latents is not None:
            # Overwrite individual latents
            vae_latents, clip_latents, prompt_latents = self._split_joint(latents, height, width)

        if mode in ["text2img"]:
            # 3.1. Encode input prompt, if available
            assert prompt is not None or prompt_embeds is not None
            prompt_embeds, negative_prompt_embeds = self.encode_prompt(
                prompt=prompt,
                device=device,
                num_images_per_prompt=multiplier,
                do_classifier_free_guidance=do_classifier_free_guidance,
                negative_prompt=negative_prompt,
                prompt_embeds=prompt_embeds,
                negative_prompt_embeds=negative_prompt_embeds,
            )

            # if do_classifier_free_guidance:
            #     prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
        else:
            # 3.2. Prepare text latent variables, if input not available
            prompt_embeds = self.prepare_text_latents(
                batch_size=batch_size,
                num_images_per_prompt=multiplier,
                seq_len=self.text_encoder_seq_len,
                hidden_size=self.text_encoder_hidden_size,
                dtype=self.text_encoder.dtype,  # Should work with both full precision and mixed precision
                device=device,
                generator=generator,
                latents=prompt_latents,
            )

        if reduce_text_emb_dim:
            prompt_embeds = self.text_decoder.encode(prompt_embeds)

        # 4. Encode image, if available; otherwise prepare image latents
        if mode in ["img2text"]:
            # 4.1. Encode images, if available
            assert image is not None, "`img2text` requires a conditioning image"
            # Encode image using VAE
            image_vae = self.image_processor.preprocess(image)
            height, width = image_vae.shape[-2:]
            image_vae_latents = self.encode_image_vae_latents(
                image=image_vae,
                batch_size=batch_size,
                num_prompts_per_image=multiplier,
                dtype=prompt_embeds.dtype,
                device=device,
                do_classifier_free_guidance=False,  # Copied from InstructPix2Pix, don't use their version of CFG
                generator=generator,
            )

            # Encode image using CLIP
            image_clip_latents = self.encode_image_clip_latents(
                image=image,
                batch_size=batch_size,
                num_prompts_per_image=multiplier,
                dtype=prompt_embeds.dtype,
                device=device,
                generator=generator,
            )
            # (batch_size, clip_hidden_size) => (batch_size, 1, clip_hidden_size)
            image_clip_latents = image_clip_latents.unsqueeze(1)
        else:
            # 4.2. Prepare image latent variables, if input not available
            # Prepare image VAE latents in latent space
            image_vae_latents = self.prepare_image_vae_latents(
                batch_size=batch_size,
                num_prompts_per_image=multiplier,
                num_channels_latents=self.num_channels_latents,
                height=height,
                width=width,
                dtype=prompt_embeds.dtype,
                device=device,
                generator=generator,
                latents=vae_latents,
            )

            # Prepare image CLIP latents
            image_clip_latents = self.prepare_image_clip_latents(
                batch_size=batch_size,
                num_prompts_per_image=multiplier,
                clip_img_dim=self.image_encoder_projection_dim,
                dtype=prompt_embeds.dtype,
                device=device,
                generator=generator,
                latents=clip_latents,
            )

        # 5. Set timesteps
        self.scheduler.set_timesteps(num_inference_steps, device=device)
        timesteps = self.scheduler.timesteps
        # max_timestep = timesteps[0]
        max_timestep = self.scheduler.config.num_train_timesteps

        # 6. Prepare latent variables
        if mode == "joint":
            latents = self._combine_joint(image_vae_latents, image_clip_latents, prompt_embeds)
        elif mode in ["text2img", "img"]:
            latents = self._combine(image_vae_latents, image_clip_latents)
        elif mode in ["img2text", "text"]:
            latents = prompt_embeds

        # 7. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
        extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)

        logger.debug(f"Scheduler extra step kwargs: {extra_step_kwargs}")

        # 8. Denoising loop
        num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
        with self.progress_bar(total=num_inference_steps) as progress_bar:
            for i, t in enumerate(timesteps):
                # predict the noise residual
                # Also applies classifier-free guidance as described in the UniDiffuser paper
                noise_pred = self._get_noise_pred(
                    mode,
                    latents,
                    t,
                    prompt_embeds,
                    image_vae_latents,
                    image_clip_latents,
                    max_timestep,
                    data_type,
                    guidance_scale,
                    generator,
                    device,
                    height,
                    width,
                )

                # compute the previous noisy sample x_t -> x_t-1
                latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample

                # call the callback, if provided
                if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
                    progress_bar.update()
                    if callback is not None and i % callback_steps == 0:
                        step_idx = i // getattr(self.scheduler, "order", 1)
                        callback(step_idx, t, latents)

        # 9. Post-processing
        image = None
        text = None
        if mode == "joint":
            image_vae_latents, image_clip_latents, text_latents = self._split_joint(latents, height, width)

            if not output_type == "latent":
                # Map latent VAE image back to pixel space
                image = self.vae.decode(image_vae_latents / self.vae.config.scaling_factor, return_dict=False)[0]
            else:
                image = image_vae_latents

            text = self.decode_text_latents(text_latents, device)
        elif mode in ["text2img", "img"]:
            image_vae_latents, image_clip_latents = self._split(latents, height, width)

            if not output_type == "latent":
                # Map latent VAE image back to pixel space
                image = self.vae.decode(image_vae_latents / self.vae.config.scaling_factor, return_dict=False)[0]
            else:
                image = image_vae_latents
        elif mode in ["img2text", "text"]:
            text_latents = latents
            text = self.decode_text_latents(text_latents, device)

        self.maybe_free_model_hooks()

        # 10. Postprocess the image, if necessary
        if image is not None:
            do_denormalize = [True] * image.shape[0]
            image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize)

        # Offload last model to CPU
        if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None:
            self.final_offload_hook.offload()

        if not return_dict:
            return (image, text)

        return ImageTextPipelineOutput(images=image, text=text)