Spaces:
Running
on
L40S
Running
on
L40S
# Copyright 2023 The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
from typing import Dict, Optional, Tuple, Union | |
import flax | |
import flax.linen as nn | |
import jax | |
import jax.numpy as jnp | |
from flax.core.frozen_dict import FrozenDict | |
from ...configuration_utils import ConfigMixin, flax_register_to_config | |
from ...utils import BaseOutput | |
from ..embeddings_flax import FlaxTimestepEmbedding, FlaxTimesteps | |
from ..modeling_flax_utils import FlaxModelMixin | |
from .unet_2d_blocks_flax import ( | |
FlaxCrossAttnDownBlock2D, | |
FlaxCrossAttnUpBlock2D, | |
FlaxDownBlock2D, | |
FlaxUNetMidBlock2DCrossAttn, | |
FlaxUpBlock2D, | |
) | |
class FlaxUNet2DConditionOutput(BaseOutput): | |
""" | |
The output of [`FlaxUNet2DConditionModel`]. | |
Args: | |
sample (`jnp.ndarray` of shape `(batch_size, num_channels, height, width)`): | |
The hidden states output conditioned on `encoder_hidden_states` input. Output of last layer of model. | |
""" | |
sample: jnp.ndarray | |
class FlaxUNet2DConditionModel(nn.Module, FlaxModelMixin, ConfigMixin): | |
r""" | |
A conditional 2D UNet model that takes a noisy sample, conditional state, and a timestep and returns a sample | |
shaped output. | |
This model inherits from [`FlaxModelMixin`]. Check the superclass documentation for it's generic methods | |
implemented for all models (such as downloading or saving). | |
This model is also a Flax Linen [flax.linen.Module](https://flax.readthedocs.io/en/latest/flax.linen.html#module) | |
subclass. Use it as a regular Flax Linen module and refer to the Flax documentation for all matters related to its | |
general usage and behavior. | |
Inherent JAX features such as the following are supported: | |
- [Just-In-Time (JIT) compilation](https://jax.readthedocs.io/en/latest/jax.html#just-in-time-compilation-jit) | |
- [Automatic Differentiation](https://jax.readthedocs.io/en/latest/jax.html#automatic-differentiation) | |
- [Vectorization](https://jax.readthedocs.io/en/latest/jax.html#vectorization-vmap) | |
- [Parallelization](https://jax.readthedocs.io/en/latest/jax.html#parallelization-pmap) | |
Parameters: | |
sample_size (`int`, *optional*): | |
The size of the input sample. | |
in_channels (`int`, *optional*, defaults to 4): | |
The number of channels in the input sample. | |
out_channels (`int`, *optional*, defaults to 4): | |
The number of channels in the output. | |
down_block_types (`Tuple[str]`, *optional*, defaults to `("FlaxCrossAttnDownBlock2D", "FlaxCrossAttnDownBlock2D", "FlaxCrossAttnDownBlock2D", "FlaxDownBlock2D")`): | |
The tuple of downsample blocks to use. | |
up_block_types (`Tuple[str]`, *optional*, defaults to `("FlaxUpBlock2D", "FlaxCrossAttnUpBlock2D", "FlaxCrossAttnUpBlock2D", "FlaxCrossAttnUpBlock2D")`): | |
The tuple of upsample blocks to use. | |
block_out_channels (`Tuple[int]`, *optional*, defaults to `(320, 640, 1280, 1280)`): | |
The tuple of output channels for each block. | |
layers_per_block (`int`, *optional*, defaults to 2): | |
The number of layers per block. | |
attention_head_dim (`int` or `Tuple[int]`, *optional*, defaults to 8): | |
The dimension of the attention heads. | |
num_attention_heads (`int` or `Tuple[int]`, *optional*): | |
The number of attention heads. | |
cross_attention_dim (`int`, *optional*, defaults to 768): | |
The dimension of the cross attention features. | |
dropout (`float`, *optional*, defaults to 0): | |
Dropout probability for down, up and bottleneck blocks. | |
flip_sin_to_cos (`bool`, *optional*, defaults to `True`): | |
Whether to flip the sin to cos in the time embedding. | |
freq_shift (`int`, *optional*, defaults to 0): The frequency shift to apply to the time embedding. | |
use_memory_efficient_attention (`bool`, *optional*, defaults to `False`): | |
Enable memory efficient attention as described [here](https://arxiv.org/abs/2112.05682). | |
split_head_dim (`bool`, *optional*, defaults to `False`): | |
Whether to split the head dimension into a new axis for the self-attention computation. In most cases, | |
enabling this flag should speed up the computation for Stable Diffusion 2.x and Stable Diffusion XL. | |
""" | |
sample_size: int = 32 | |
in_channels: int = 4 | |
out_channels: int = 4 | |
down_block_types: Tuple[str, ...] = ( | |
"CrossAttnDownBlock2D", | |
"CrossAttnDownBlock2D", | |
"CrossAttnDownBlock2D", | |
"DownBlock2D", | |
) | |
up_block_types: Tuple[str, ...] = ("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D") | |
only_cross_attention: Union[bool, Tuple[bool]] = False | |
block_out_channels: Tuple[int, ...] = (320, 640, 1280, 1280) | |
layers_per_block: int = 2 | |
attention_head_dim: Union[int, Tuple[int, ...]] = 8 | |
num_attention_heads: Optional[Union[int, Tuple[int, ...]]] = None | |
cross_attention_dim: int = 1280 | |
dropout: float = 0.0 | |
use_linear_projection: bool = False | |
dtype: jnp.dtype = jnp.float32 | |
flip_sin_to_cos: bool = True | |
freq_shift: int = 0 | |
use_memory_efficient_attention: bool = False | |
split_head_dim: bool = False | |
transformer_layers_per_block: Union[int, Tuple[int, ...]] = 1 | |
addition_embed_type: Optional[str] = None | |
addition_time_embed_dim: Optional[int] = None | |
addition_embed_type_num_heads: int = 64 | |
projection_class_embeddings_input_dim: Optional[int] = None | |
def init_weights(self, rng: jax.Array) -> FrozenDict: | |
# init input tensors | |
sample_shape = (1, self.in_channels, self.sample_size, self.sample_size) | |
sample = jnp.zeros(sample_shape, dtype=jnp.float32) | |
timesteps = jnp.ones((1,), dtype=jnp.int32) | |
encoder_hidden_states = jnp.zeros((1, 1, self.cross_attention_dim), dtype=jnp.float32) | |
params_rng, dropout_rng = jax.random.split(rng) | |
rngs = {"params": params_rng, "dropout": dropout_rng} | |
added_cond_kwargs = None | |
if self.addition_embed_type == "text_time": | |
# we retrieve the expected `text_embeds_dim` by first checking if the architecture is a refiner | |
# or non-refiner architecture and then by "reverse-computing" from `projection_class_embeddings_input_dim` | |
is_refiner = ( | |
5 * self.config.addition_time_embed_dim + self.config.cross_attention_dim | |
== self.config.projection_class_embeddings_input_dim | |
) | |
num_micro_conditions = 5 if is_refiner else 6 | |
text_embeds_dim = self.config.projection_class_embeddings_input_dim - ( | |
num_micro_conditions * self.config.addition_time_embed_dim | |
) | |
time_ids_channels = self.projection_class_embeddings_input_dim - text_embeds_dim | |
time_ids_dims = time_ids_channels // self.addition_time_embed_dim | |
added_cond_kwargs = { | |
"text_embeds": jnp.zeros((1, text_embeds_dim), dtype=jnp.float32), | |
"time_ids": jnp.zeros((1, time_ids_dims), dtype=jnp.float32), | |
} | |
return self.init(rngs, sample, timesteps, encoder_hidden_states, added_cond_kwargs)["params"] | |
def setup(self) -> None: | |
block_out_channels = self.block_out_channels | |
time_embed_dim = block_out_channels[0] * 4 | |
if self.num_attention_heads is not None: | |
raise ValueError( | |
"At the moment it is not possible to define the number of attention heads via `num_attention_heads` because of a naming issue as described in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131. Passing `num_attention_heads` will only be supported in diffusers v0.19." | |
) | |
# If `num_attention_heads` is not defined (which is the case for most models) | |
# it will default to `attention_head_dim`. This looks weird upon first reading it and it is. | |
# The reason for this behavior is to correct for incorrectly named variables that were introduced | |
# when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131 | |
# Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking | |
# which is why we correct for the naming here. | |
num_attention_heads = self.num_attention_heads or self.attention_head_dim | |
# input | |
self.conv_in = nn.Conv( | |
block_out_channels[0], | |
kernel_size=(3, 3), | |
strides=(1, 1), | |
padding=((1, 1), (1, 1)), | |
dtype=self.dtype, | |
) | |
# time | |
self.time_proj = FlaxTimesteps( | |
block_out_channels[0], flip_sin_to_cos=self.flip_sin_to_cos, freq_shift=self.config.freq_shift | |
) | |
self.time_embedding = FlaxTimestepEmbedding(time_embed_dim, dtype=self.dtype) | |
only_cross_attention = self.only_cross_attention | |
if isinstance(only_cross_attention, bool): | |
only_cross_attention = (only_cross_attention,) * len(self.down_block_types) | |
if isinstance(num_attention_heads, int): | |
num_attention_heads = (num_attention_heads,) * len(self.down_block_types) | |
# transformer layers per block | |
transformer_layers_per_block = self.transformer_layers_per_block | |
if isinstance(transformer_layers_per_block, int): | |
transformer_layers_per_block = [transformer_layers_per_block] * len(self.down_block_types) | |
# addition embed types | |
if self.addition_embed_type is None: | |
self.add_embedding = None | |
elif self.addition_embed_type == "text_time": | |
if self.addition_time_embed_dim is None: | |
raise ValueError( | |
f"addition_embed_type {self.addition_embed_type} requires `addition_time_embed_dim` to not be None" | |
) | |
self.add_time_proj = FlaxTimesteps(self.addition_time_embed_dim, self.flip_sin_to_cos, self.freq_shift) | |
self.add_embedding = FlaxTimestepEmbedding(time_embed_dim, dtype=self.dtype) | |
else: | |
raise ValueError(f"addition_embed_type: {self.addition_embed_type} must be None or `text_time`.") | |
# down | |
down_blocks = [] | |
output_channel = block_out_channels[0] | |
for i, down_block_type in enumerate(self.down_block_types): | |
input_channel = output_channel | |
output_channel = block_out_channels[i] | |
is_final_block = i == len(block_out_channels) - 1 | |
if down_block_type == "CrossAttnDownBlock2D": | |
down_block = FlaxCrossAttnDownBlock2D( | |
in_channels=input_channel, | |
out_channels=output_channel, | |
dropout=self.dropout, | |
num_layers=self.layers_per_block, | |
transformer_layers_per_block=transformer_layers_per_block[i], | |
num_attention_heads=num_attention_heads[i], | |
add_downsample=not is_final_block, | |
use_linear_projection=self.use_linear_projection, | |
only_cross_attention=only_cross_attention[i], | |
use_memory_efficient_attention=self.use_memory_efficient_attention, | |
split_head_dim=self.split_head_dim, | |
dtype=self.dtype, | |
) | |
else: | |
down_block = FlaxDownBlock2D( | |
in_channels=input_channel, | |
out_channels=output_channel, | |
dropout=self.dropout, | |
num_layers=self.layers_per_block, | |
add_downsample=not is_final_block, | |
dtype=self.dtype, | |
) | |
down_blocks.append(down_block) | |
self.down_blocks = down_blocks | |
# mid | |
self.mid_block = FlaxUNetMidBlock2DCrossAttn( | |
in_channels=block_out_channels[-1], | |
dropout=self.dropout, | |
num_attention_heads=num_attention_heads[-1], | |
transformer_layers_per_block=transformer_layers_per_block[-1], | |
use_linear_projection=self.use_linear_projection, | |
use_memory_efficient_attention=self.use_memory_efficient_attention, | |
split_head_dim=self.split_head_dim, | |
dtype=self.dtype, | |
) | |
# up | |
up_blocks = [] | |
reversed_block_out_channels = list(reversed(block_out_channels)) | |
reversed_num_attention_heads = list(reversed(num_attention_heads)) | |
only_cross_attention = list(reversed(only_cross_attention)) | |
output_channel = reversed_block_out_channels[0] | |
reversed_transformer_layers_per_block = list(reversed(transformer_layers_per_block)) | |
for i, up_block_type in enumerate(self.up_block_types): | |
prev_output_channel = output_channel | |
output_channel = reversed_block_out_channels[i] | |
input_channel = reversed_block_out_channels[min(i + 1, len(block_out_channels) - 1)] | |
is_final_block = i == len(block_out_channels) - 1 | |
if up_block_type == "CrossAttnUpBlock2D": | |
up_block = FlaxCrossAttnUpBlock2D( | |
in_channels=input_channel, | |
out_channels=output_channel, | |
prev_output_channel=prev_output_channel, | |
num_layers=self.layers_per_block + 1, | |
transformer_layers_per_block=reversed_transformer_layers_per_block[i], | |
num_attention_heads=reversed_num_attention_heads[i], | |
add_upsample=not is_final_block, | |
dropout=self.dropout, | |
use_linear_projection=self.use_linear_projection, | |
only_cross_attention=only_cross_attention[i], | |
use_memory_efficient_attention=self.use_memory_efficient_attention, | |
split_head_dim=self.split_head_dim, | |
dtype=self.dtype, | |
) | |
else: | |
up_block = FlaxUpBlock2D( | |
in_channels=input_channel, | |
out_channels=output_channel, | |
prev_output_channel=prev_output_channel, | |
num_layers=self.layers_per_block + 1, | |
add_upsample=not is_final_block, | |
dropout=self.dropout, | |
dtype=self.dtype, | |
) | |
up_blocks.append(up_block) | |
prev_output_channel = output_channel | |
self.up_blocks = up_blocks | |
# out | |
self.conv_norm_out = nn.GroupNorm(num_groups=32, epsilon=1e-5) | |
self.conv_out = nn.Conv( | |
self.out_channels, | |
kernel_size=(3, 3), | |
strides=(1, 1), | |
padding=((1, 1), (1, 1)), | |
dtype=self.dtype, | |
) | |
def __call__( | |
self, | |
sample: jnp.ndarray, | |
timesteps: Union[jnp.ndarray, float, int], | |
encoder_hidden_states: jnp.ndarray, | |
added_cond_kwargs: Optional[Union[Dict, FrozenDict]] = None, | |
down_block_additional_residuals: Optional[Tuple[jnp.ndarray, ...]] = None, | |
mid_block_additional_residual: Optional[jnp.ndarray] = None, | |
return_dict: bool = True, | |
train: bool = False, | |
) -> Union[FlaxUNet2DConditionOutput, Tuple[jnp.ndarray]]: | |
r""" | |
Args: | |
sample (`jnp.ndarray`): (batch, channel, height, width) noisy inputs tensor | |
timestep (`jnp.ndarray` or `float` or `int`): timesteps | |
encoder_hidden_states (`jnp.ndarray`): (batch_size, sequence_length, hidden_size) encoder hidden states | |
added_cond_kwargs: (`dict`, *optional*): | |
A kwargs dictionary containing additional embeddings that if specified are added to the embeddings that | |
are passed along to the UNet blocks. | |
down_block_additional_residuals: (`tuple` of `torch.Tensor`, *optional*): | |
A tuple of tensors that if specified are added to the residuals of down unet blocks. | |
mid_block_additional_residual: (`torch.Tensor`, *optional*): | |
A tensor that if specified is added to the residual of the middle unet block. | |
return_dict (`bool`, *optional*, defaults to `True`): | |
Whether or not to return a [`models.unets.unet_2d_condition_flax.FlaxUNet2DConditionOutput`] instead of a | |
plain tuple. | |
train (`bool`, *optional*, defaults to `False`): | |
Use deterministic functions and disable dropout when not training. | |
Returns: | |
[`~models.unets.unet_2d_condition_flax.FlaxUNet2DConditionOutput`] or `tuple`: | |
[`~models.unets.unet_2d_condition_flax.FlaxUNet2DConditionOutput`] if `return_dict` is True, otherwise a `tuple`. | |
When returning a tuple, the first element is the sample tensor. | |
""" | |
# 1. time | |
if not isinstance(timesteps, jnp.ndarray): | |
timesteps = jnp.array([timesteps], dtype=jnp.int32) | |
elif isinstance(timesteps, jnp.ndarray) and len(timesteps.shape) == 0: | |
timesteps = timesteps.astype(dtype=jnp.float32) | |
timesteps = jnp.expand_dims(timesteps, 0) | |
t_emb = self.time_proj(timesteps) | |
t_emb = self.time_embedding(t_emb) | |
# additional embeddings | |
aug_emb = None | |
if self.addition_embed_type == "text_time": | |
if added_cond_kwargs is None: | |
raise ValueError( | |
f"Need to provide argument `added_cond_kwargs` for {self.__class__} when using `addition_embed_type={self.addition_embed_type}`" | |
) | |
text_embeds = added_cond_kwargs.get("text_embeds") | |
if text_embeds is None: | |
raise ValueError( | |
f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `text_embeds` to be passed in `added_cond_kwargs`" | |
) | |
time_ids = added_cond_kwargs.get("time_ids") | |
if time_ids is None: | |
raise ValueError( | |
f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `time_ids` to be passed in `added_cond_kwargs`" | |
) | |
# compute time embeds | |
time_embeds = self.add_time_proj(jnp.ravel(time_ids)) # (1, 6) => (6,) => (6, 256) | |
time_embeds = jnp.reshape(time_embeds, (text_embeds.shape[0], -1)) | |
add_embeds = jnp.concatenate([text_embeds, time_embeds], axis=-1) | |
aug_emb = self.add_embedding(add_embeds) | |
t_emb = t_emb + aug_emb if aug_emb is not None else t_emb | |
# 2. pre-process | |
sample = jnp.transpose(sample, (0, 2, 3, 1)) | |
sample = self.conv_in(sample) | |
# 3. down | |
down_block_res_samples = (sample,) | |
for down_block in self.down_blocks: | |
if isinstance(down_block, FlaxCrossAttnDownBlock2D): | |
sample, res_samples = down_block(sample, t_emb, encoder_hidden_states, deterministic=not train) | |
else: | |
sample, res_samples = down_block(sample, t_emb, deterministic=not train) | |
down_block_res_samples += res_samples | |
if down_block_additional_residuals is not None: | |
new_down_block_res_samples = () | |
for down_block_res_sample, down_block_additional_residual in zip( | |
down_block_res_samples, down_block_additional_residuals | |
): | |
down_block_res_sample += down_block_additional_residual | |
new_down_block_res_samples += (down_block_res_sample,) | |
down_block_res_samples = new_down_block_res_samples | |
# 4. mid | |
sample = self.mid_block(sample, t_emb, encoder_hidden_states, deterministic=not train) | |
if mid_block_additional_residual is not None: | |
sample += mid_block_additional_residual | |
# 5. up | |
for up_block in self.up_blocks: | |
res_samples = down_block_res_samples[-(self.layers_per_block + 1) :] | |
down_block_res_samples = down_block_res_samples[: -(self.layers_per_block + 1)] | |
if isinstance(up_block, FlaxCrossAttnUpBlock2D): | |
sample = up_block( | |
sample, | |
temb=t_emb, | |
encoder_hidden_states=encoder_hidden_states, | |
res_hidden_states_tuple=res_samples, | |
deterministic=not train, | |
) | |
else: | |
sample = up_block(sample, temb=t_emb, res_hidden_states_tuple=res_samples, deterministic=not train) | |
# 6. post-process | |
sample = self.conv_norm_out(sample) | |
sample = nn.silu(sample) | |
sample = self.conv_out(sample) | |
sample = jnp.transpose(sample, (0, 3, 1, 2)) | |
if not return_dict: | |
return (sample,) | |
return FlaxUNet2DConditionOutput(sample=sample) | |