# coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Dict, Union import torch import torch.nn.functional as F from torch import nn from torch.utils.checkpoint import checkpoint from ...configuration_utils import ConfigMixin, register_to_config from ...loaders import PeftAdapterMixin from ..attention import BasicTransformerBlock, SkipFFTransformerBlock from ..attention_processor import ( ADDED_KV_ATTENTION_PROCESSORS, CROSS_ATTENTION_PROCESSORS, AttentionProcessor, AttnAddedKVProcessor, AttnProcessor, ) from ..embeddings import TimestepEmbedding, get_timestep_embedding from ..modeling_utils import ModelMixin from ..normalization import GlobalResponseNorm, RMSNorm from ..resnet import Downsample2D, Upsample2D class UVit2DModel(ModelMixin, ConfigMixin, PeftAdapterMixin): _supports_gradient_checkpointing = True @register_to_config def __init__( self, # global config hidden_size: int = 1024, use_bias: bool = False, hidden_dropout: float = 0.0, # conditioning dimensions cond_embed_dim: int = 768, micro_cond_encode_dim: int = 256, micro_cond_embed_dim: int = 1280, encoder_hidden_size: int = 768, # num tokens vocab_size: int = 8256, # codebook_size + 1 (for the mask token) rounded codebook_size: int = 8192, # `UVit2DConvEmbed` in_channels: int = 768, block_out_channels: int = 768, num_res_blocks: int = 3, downsample: bool = False, upsample: bool = False, block_num_heads: int = 12, # `TransformerLayer` num_hidden_layers: int = 22, num_attention_heads: int = 16, # `Attention` attention_dropout: float = 0.0, # `FeedForward` intermediate_size: int = 2816, # `Norm` layer_norm_eps: float = 1e-6, ln_elementwise_affine: bool = True, sample_size: int = 64, ): super().__init__() self.encoder_proj = nn.Linear(encoder_hidden_size, hidden_size, bias=use_bias) self.encoder_proj_layer_norm = RMSNorm(hidden_size, layer_norm_eps, ln_elementwise_affine) self.embed = UVit2DConvEmbed( in_channels, block_out_channels, vocab_size, ln_elementwise_affine, layer_norm_eps, use_bias ) self.cond_embed = TimestepEmbedding( micro_cond_embed_dim + cond_embed_dim, hidden_size, sample_proj_bias=use_bias ) self.down_block = UVitBlock( block_out_channels, num_res_blocks, hidden_size, hidden_dropout, ln_elementwise_affine, layer_norm_eps, use_bias, block_num_heads, attention_dropout, downsample, False, ) self.project_to_hidden_norm = RMSNorm(block_out_channels, layer_norm_eps, ln_elementwise_affine) self.project_to_hidden = nn.Linear(block_out_channels, hidden_size, bias=use_bias) self.transformer_layers = nn.ModuleList( [ BasicTransformerBlock( dim=hidden_size, num_attention_heads=num_attention_heads, attention_head_dim=hidden_size // num_attention_heads, dropout=hidden_dropout, cross_attention_dim=hidden_size, attention_bias=use_bias, norm_type="ada_norm_continuous", ada_norm_continous_conditioning_embedding_dim=hidden_size, norm_elementwise_affine=ln_elementwise_affine, norm_eps=layer_norm_eps, ada_norm_bias=use_bias, ff_inner_dim=intermediate_size, ff_bias=use_bias, attention_out_bias=use_bias, ) for _ in range(num_hidden_layers) ] ) self.project_from_hidden_norm = RMSNorm(hidden_size, layer_norm_eps, ln_elementwise_affine) self.project_from_hidden = nn.Linear(hidden_size, block_out_channels, bias=use_bias) self.up_block = UVitBlock( block_out_channels, num_res_blocks, hidden_size, hidden_dropout, ln_elementwise_affine, layer_norm_eps, use_bias, block_num_heads, attention_dropout, downsample=False, upsample=upsample, ) self.mlm_layer = ConvMlmLayer( block_out_channels, in_channels, use_bias, ln_elementwise_affine, layer_norm_eps, codebook_size ) self.gradient_checkpointing = False def _set_gradient_checkpointing(self, module, value: bool = False) -> None: pass def forward(self, input_ids, encoder_hidden_states, pooled_text_emb, micro_conds, cross_attention_kwargs=None): encoder_hidden_states = self.encoder_proj(encoder_hidden_states) encoder_hidden_states = self.encoder_proj_layer_norm(encoder_hidden_states) micro_cond_embeds = get_timestep_embedding( micro_conds.flatten(), self.config.micro_cond_encode_dim, flip_sin_to_cos=True, downscale_freq_shift=0 ) micro_cond_embeds = micro_cond_embeds.reshape((input_ids.shape[0], -1)) pooled_text_emb = torch.cat([pooled_text_emb, micro_cond_embeds], dim=1) pooled_text_emb = pooled_text_emb.to(dtype=self.dtype) pooled_text_emb = self.cond_embed(pooled_text_emb).to(encoder_hidden_states.dtype) hidden_states = self.embed(input_ids) hidden_states = self.down_block( hidden_states, pooled_text_emb=pooled_text_emb, encoder_hidden_states=encoder_hidden_states, cross_attention_kwargs=cross_attention_kwargs, ) batch_size, channels, height, width = hidden_states.shape hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch_size, height * width, channels) hidden_states = self.project_to_hidden_norm(hidden_states) hidden_states = self.project_to_hidden(hidden_states) for layer in self.transformer_layers: if self.training and self.gradient_checkpointing: def layer_(*args): return checkpoint(layer, *args) else: layer_ = layer hidden_states = layer_( hidden_states, encoder_hidden_states=encoder_hidden_states, cross_attention_kwargs=cross_attention_kwargs, added_cond_kwargs={"pooled_text_emb": pooled_text_emb}, ) hidden_states = self.project_from_hidden_norm(hidden_states) hidden_states = self.project_from_hidden(hidden_states) hidden_states = hidden_states.reshape(batch_size, height, width, channels).permute(0, 3, 1, 2) hidden_states = self.up_block( hidden_states, pooled_text_emb=pooled_text_emb, encoder_hidden_states=encoder_hidden_states, cross_attention_kwargs=cross_attention_kwargs, ) logits = self.mlm_layer(hidden_states) return logits @property # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.attn_processors def attn_processors(self) -> Dict[str, AttentionProcessor]: r""" Returns: `dict` of attention processors: A dictionary containing all attention processors used in the model with indexed by its weight name. """ # set recursively processors = {} def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]): if hasattr(module, "get_processor"): processors[f"{name}.processor"] = module.get_processor(return_deprecated_lora=True) for sub_name, child in module.named_children(): fn_recursive_add_processors(f"{name}.{sub_name}", child, processors) return processors for name, module in self.named_children(): fn_recursive_add_processors(name, module, processors) return processors # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attn_processor def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]): r""" Sets the attention processor to use to compute attention. Parameters: processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`): The instantiated processor class or a dictionary of processor classes that will be set as the processor for **all** `Attention` layers. If `processor` is a dict, the key needs to define the path to the corresponding cross attention processor. This is strongly recommended when setting trainable attention processors. """ count = len(self.attn_processors.keys()) if isinstance(processor, dict) and len(processor) != count: raise ValueError( f"A dict of processors was passed, but the number of processors {len(processor)} does not match the" f" number of attention layers: {count}. Please make sure to pass {count} processor classes." ) def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor): if hasattr(module, "set_processor"): if not isinstance(processor, dict): module.set_processor(processor) else: module.set_processor(processor.pop(f"{name}.processor")) for sub_name, child in module.named_children(): fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor) for name, module in self.named_children(): fn_recursive_attn_processor(name, module, processor) # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_default_attn_processor def set_default_attn_processor(self): """ Disables custom attention processors and sets the default attention implementation. """ if all(proc.__class__ in ADDED_KV_ATTENTION_PROCESSORS for proc in self.attn_processors.values()): processor = AttnAddedKVProcessor() elif all(proc.__class__ in CROSS_ATTENTION_PROCESSORS for proc in self.attn_processors.values()): processor = AttnProcessor() else: raise ValueError( f"Cannot call `set_default_attn_processor` when attention processors are of type {next(iter(self.attn_processors.values()))}" ) self.set_attn_processor(processor) class UVit2DConvEmbed(nn.Module): def __init__(self, in_channels, block_out_channels, vocab_size, elementwise_affine, eps, bias): super().__init__() self.embeddings = nn.Embedding(vocab_size, in_channels) self.layer_norm = RMSNorm(in_channels, eps, elementwise_affine) self.conv = nn.Conv2d(in_channels, block_out_channels, kernel_size=1, bias=bias) def forward(self, input_ids): embeddings = self.embeddings(input_ids) embeddings = self.layer_norm(embeddings) embeddings = embeddings.permute(0, 3, 1, 2) embeddings = self.conv(embeddings) return embeddings class UVitBlock(nn.Module): def __init__( self, channels, num_res_blocks: int, hidden_size, hidden_dropout, ln_elementwise_affine, layer_norm_eps, use_bias, block_num_heads, attention_dropout, downsample: bool, upsample: bool, ): super().__init__() if downsample: self.downsample = Downsample2D( channels, use_conv=True, padding=0, name="Conv2d_0", kernel_size=2, norm_type="rms_norm", eps=layer_norm_eps, elementwise_affine=ln_elementwise_affine, bias=use_bias, ) else: self.downsample = None self.res_blocks = nn.ModuleList( [ ConvNextBlock( channels, layer_norm_eps, ln_elementwise_affine, use_bias, hidden_dropout, hidden_size, ) for i in range(num_res_blocks) ] ) self.attention_blocks = nn.ModuleList( [ SkipFFTransformerBlock( channels, block_num_heads, channels // block_num_heads, hidden_size, use_bias, attention_dropout, channels, attention_bias=use_bias, attention_out_bias=use_bias, ) for _ in range(num_res_blocks) ] ) if upsample: self.upsample = Upsample2D( channels, use_conv_transpose=True, kernel_size=2, padding=0, name="conv", norm_type="rms_norm", eps=layer_norm_eps, elementwise_affine=ln_elementwise_affine, bias=use_bias, interpolate=False, ) else: self.upsample = None def forward(self, x, pooled_text_emb, encoder_hidden_states, cross_attention_kwargs): if self.downsample is not None: x = self.downsample(x) for res_block, attention_block in zip(self.res_blocks, self.attention_blocks): x = res_block(x, pooled_text_emb) batch_size, channels, height, width = x.shape x = x.view(batch_size, channels, height * width).permute(0, 2, 1) x = attention_block( x, encoder_hidden_states=encoder_hidden_states, cross_attention_kwargs=cross_attention_kwargs ) x = x.permute(0, 2, 1).view(batch_size, channels, height, width) if self.upsample is not None: x = self.upsample(x) return x class ConvNextBlock(nn.Module): def __init__( self, channels, layer_norm_eps, ln_elementwise_affine, use_bias, hidden_dropout, hidden_size, res_ffn_factor=4 ): super().__init__() self.depthwise = nn.Conv2d( channels, channels, kernel_size=3, padding=1, groups=channels, bias=use_bias, ) self.norm = RMSNorm(channels, layer_norm_eps, ln_elementwise_affine) self.channelwise_linear_1 = nn.Linear(channels, int(channels * res_ffn_factor), bias=use_bias) self.channelwise_act = nn.GELU() self.channelwise_norm = GlobalResponseNorm(int(channels * res_ffn_factor)) self.channelwise_linear_2 = nn.Linear(int(channels * res_ffn_factor), channels, bias=use_bias) self.channelwise_dropout = nn.Dropout(hidden_dropout) self.cond_embeds_mapper = nn.Linear(hidden_size, channels * 2, use_bias) def forward(self, x, cond_embeds): x_res = x x = self.depthwise(x) x = x.permute(0, 2, 3, 1) x = self.norm(x) x = self.channelwise_linear_1(x) x = self.channelwise_act(x) x = self.channelwise_norm(x) x = self.channelwise_linear_2(x) x = self.channelwise_dropout(x) x = x.permute(0, 3, 1, 2) x = x + x_res scale, shift = self.cond_embeds_mapper(F.silu(cond_embeds)).chunk(2, dim=1) x = x * (1 + scale[:, :, None, None]) + shift[:, :, None, None] return x class ConvMlmLayer(nn.Module): def __init__( self, block_out_channels: int, in_channels: int, use_bias: bool, ln_elementwise_affine: bool, layer_norm_eps: float, codebook_size: int, ): super().__init__() self.conv1 = nn.Conv2d(block_out_channels, in_channels, kernel_size=1, bias=use_bias) self.layer_norm = RMSNorm(in_channels, layer_norm_eps, ln_elementwise_affine) self.conv2 = nn.Conv2d(in_channels, codebook_size, kernel_size=1, bias=use_bias) def forward(self, hidden_states): hidden_states = self.conv1(hidden_states) hidden_states = self.layer_norm(hidden_states.permute(0, 2, 3, 1)).permute(0, 3, 1, 2) logits = self.conv2(hidden_states) return logits