import os
import gradio as gr
title = "Have Fun With ChubbyBot"
description = """
The bot is trained on blended_skill_talk dataset using facebook/blenderbot-400M-distill.
"""
article = "Recipes for building an open-domain chatbot
Original PARLAI Code
"
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
tokenizer = AutoTokenizer.from_pretrained("facebook/blenderbot-400M-distill")
model = AutoModelForCausalLM.from_pretrained("facebook/blenderbot-400M-distill")
def predict(input, history=[]):
# tokenize the new input sentence
new_user_input_ids = tokenizer.encode(input + tokenizer.eos_token, return_tensors='pt')
# append the new user input tokens to the chat history
bot_input_ids = torch.cat([torch.LongTensor(history), new_user_input_ids], dim=-1)
# generate a response
history = model.generate(bot_input_ids, max_length=1000, pad_token_id=tokenizer.eos_token_id).tolist()
# convert the tokens to text, and then split the responses into lines
response = tokenizer.decode(history[0]).replace("<|endoftext|>", "\n")
return response, history
gr.Interface(
fn = predict,
inputs = ["textbox","state"],
outputs = ["chatbot","state"],
theme ="grass",
title = title,
description = description,
article = article
).launch(enable_queue=True)