import gradio as gr from transformers import pipeline,AutoTokenizer, AutoModelForSeq2SeqLM from bs4 import BeautifulSoup from bs4.element import Comment from urllib.request import urlopen import urllib.request from bs4 import BeautifulSoup def easyterms(text:str)->str: print("In summerizing function of easyterms") tokenizer = AutoTokenizer.from_pretrained("EasyTerms/etsummerizer_v2") model = AutoModelForSeq2SeqLM.from_pretrained("EasyTerms/etsummerizer_v2") inputs = tokenizer(text, return_tensors="pt", truncation=True, max_length=512) summary_ids = model.generate(inputs['input_ids'], attention_mask=inputs['attention_mask'], max_length=128, num_beams=4) summary = tokenizer.decode(summary_ids[0], skip_special_tokens=True) return summary def get_paragaph(url:str)-> list: parser = 'html.parser' # or 'lxml' (preferred) or 'html5lib', if installed html = urllib.request.urlopen(url) # parsing the html file soup = BeautifulSoup(html, parser, from_encoding=html.info().get_param('charset')) samples = soup.findAll("p") samples = [item.text for item in samples] return samples def summerize(Option:str, Text:str)-> str: print(Option) if Option == "text": return easyterms(Text) else: paragraph = get_paragaph(Text) result = [] for par in paragraph: result.append(easyterms(par)) res = '\n'.join(data for data in result) return res intro = gr.Markdown( '''