Spaces:
Running
Running
File size: 13,540 Bytes
4372559 11220de 4372559 46e3775 7332959 2c6a6b2 4372559 b7fada2 4372559 702e148 4372559 11220de 4372559 97c4a51 4372559 702e148 4372559 11220de 4372559 996e98c 4372559 d7b07b1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 |
import os
import json
import librosa
import soundfile
import numpy as np
import gradio as gr
from UVR_interface import root, UVRInterface, VR_MODELS_DIR, MDX_MODELS_DIR
from gui_data.constants import *
from typing import List, Dict, Callable, Union
class UVRWebUI:
def __init__(self, uvr: UVRInterface, online_data_path: str) -> None:
self.uvr = uvr
self.models_url = self.get_models_url(online_data_path)
self.define_layout()
self.input_temp_dir = "__temp"
self.export_path = "out"
if not os.path.exists(self.input_temp_dir):
os.mkdir(self.input_temp_dir)
def get_models_url(self, models_info_path: str) -> Dict[str, Dict]:
with open(models_info_path, "r") as f:
online_data = json.loads(f.read())
models_url = {}
for arch, download_list_key in zip([VR_ARCH_TYPE, MDX_ARCH_TYPE], ["vr_download_list", "mdx_download_list"]):
models_url[arch] = {model: NORMAL_REPO+model_path for model, model_path in online_data[download_list_key].items()}
return models_url
def get_local_models(self, arch: str) -> List[str]:
model_config = {
VR_ARCH_TYPE: (VR_MODELS_DIR, ".pth"),
MDX_ARCH_TYPE: (MDX_MODELS_DIR, ".onnx"),
}
try:
model_dir, suffix = model_config[arch]
except KeyError:
raise ValueError(f"Unkown arch type: {arch}")
return [os.path.splitext(f)[0] for f in os.listdir(model_dir) if f.endswith(suffix)]
def set_arch_setting_value(self, arch: str, setting1, setting2):
if arch == VR_ARCH_TYPE:
root.window_size_var.set(setting1)
root.aggression_setting_var.set(setting2)
elif arch == MDX_ARCH_TYPE:
root.mdx_batch_size_var.set(setting1)
root.compensate_var.set(setting2)
def arch_select_update(self, arch: str) -> List[Dict]:
choices = self.get_local_models(arch)
if arch == VR_ARCH_TYPE:
model_update = self.model_choice.update(choices=choices, value=CHOOSE_MODEL, label=SELECT_VR_MODEL_MAIN_LABEL)
setting1_update = self.arch_setting1.update(choices=VR_WINDOW, label=WINDOW_SIZE_MAIN_LABEL, value=root.window_size_var.get())
setting2_update = self.arch_setting2.update(choices=VR_AGGRESSION, label=AGGRESSION_SETTING_MAIN_LABEL, value=root.aggression_setting_var.get())
elif arch == MDX_ARCH_TYPE:
model_update = self.model_choice.update(choices=choices, value=CHOOSE_MODEL, label=CHOOSE_MDX_MODEL_MAIN_LABEL)
setting1_update = self.arch_setting1.update(choices=BATCH_SIZE, label=BATCHES_MDX_MAIN_LABEL, value=root.mdx_batch_size_var.get())
setting2_update = self.arch_setting2.update(choices=VOL_COMPENSATION, label=VOL_COMP_MDX_MAIN_LABEL, value=root.compensate_var.get())
else:
raise gr.Error(f"Unkown arch type: {arch}")
return [model_update, setting1_update, setting2_update]
def model_select_update(self, arch: str, model_name: str) -> List[Union[str, Dict, None]]:
if model_name == CHOOSE_MODEL:
return [None for _ in range(4)]
model, = self.uvr.assemble_model_data(model_name, arch)
if not model.model_status:
raise gr.Error(f"Cannot get model data, model hash = {model.model_hash}")
stem1_check_update = self.primary_stem_only.update(label=f"{model.primary_stem} Only")
stem2_check_update = self.secondary_stem_only.update(label=f"{model.secondary_stem} Only")
stem1_out_update = self.primary_stem_out.update(label=f"Output {model.primary_stem}")
stem2_out_update = self.secondary_stem_out.update(label=f"Output {model.secondary_stem}")
return [stem1_check_update, stem2_check_update, stem1_out_update, stem2_out_update]
def checkbox_set_root_value(self, checkbox: gr.Checkbox, root_attr: str):
checkbox.change(lambda value: root.__getattribute__(root_attr).set(value), inputs=checkbox)
def set_checkboxes_exclusive(self, checkboxes: List[gr.Checkbox], pure_callbacks: List[Callable], exclusive_value=True):
def exclusive_onchange(i, callback_i):
def new_onchange(*check_values):
if check_values[i] == exclusive_value:
return_values = []
for j, value_j in enumerate(check_values):
if j != i and value_j == exclusive_value:
return_values.append(not exclusive_value)
else:
return_values.append(value_j)
else:
return_values = check_values
callback_i(check_values[i])
return return_values
return new_onchange
for i, (checkbox, callback) in enumerate(zip(checkboxes, pure_callbacks)):
checkbox.change(exclusive_onchange(i, callback), inputs=checkboxes, outputs=checkboxes)
def process(self, input_audio, input_filename, model_name, arch, setting1, setting2, progress=gr.Progress()):
def set_progress_func(step, inference_iterations=0):
progress_curr = step + inference_iterations
progress(progress_curr)
sampling_rate, audio = input_audio
audio = (audio / np.iinfo(audio.dtype).max).astype(np.float32)
if len(audio.shape) > 1:
audio = librosa.to_mono(audio.transpose(1, 0))
input_path = os.path.join(self.input_temp_dir, input_filename)
soundfile.write(input_path, audio, sampling_rate, format="wav")
self.set_arch_setting_value(arch, setting1, setting2)
seperator = uvr.process(
model_name=model_name,
arch_type=arch,
audio_file=input_path,
export_path=self.export_path,
is_model_sample_mode=root.model_sample_mode_var.get(),
set_progress_func=set_progress_func,
)
primary_audio = None
secondary_audio = None
msg = ""
if not seperator.is_secondary_stem_only:
primary_stem_path = os.path.join(seperator.export_path, f"{seperator.audio_file_base}_({seperator.primary_stem}).wav")
audio, rate = soundfile.read(primary_stem_path)
primary_audio = (rate, audio)
msg += f"{seperator.primary_stem} saved at {primary_stem_path}\n"
if not seperator.is_primary_stem_only:
secondary_stem_path = os.path.join(seperator.export_path, f"{seperator.audio_file_base}_({seperator.secondary_stem}).wav")
audio, rate = soundfile.read(secondary_stem_path)
secondary_audio = (rate, audio)
msg += f"{seperator.secondary_stem} saved at {secondary_stem_path}\n"
os.remove(input_path)
return primary_audio, secondary_audio, msg
def define_layout(self):
with gr.Blocks() as app:
self.app = app
gr.HTML("<h1> 🎵 Ultimate Vocal Remover 5.6 for Hugging Face 🎵 </h1>")
gr.Markdown("## Space created by [Not Eddy (Spanish Mod)](http://discord.com/users/274566299349155851) in [AI HUB](https://discord.gg/aihub) server.")
gr.Markdown("## You can use a GPU version in this [Colab](https://colab.research.google.com/github/Eddycrack864/Ultimate-Vocal-Remover-5.6-for-Google-Colab/blob/main/Ultimate_Vocal_Remover_5_6_for_Google_Colab.ipynb). If you liked the space and colab you can give it a 💖 and star my repo on [GitHub](https://github.com/Eddycrack864/UVR5-5.6-for-Colab).")
gr.Markdown("### Thanks to: [Hina](https://github.com/hinabl), [r3gm](https://github.com/R3gm) and [Anjok07](https://github.com/Anjok07)")
gr.Markdown("### You can donate to the original UVR5 project [here](https://www.buymeacoffee.com/uvr5):")
gr.Markdown("### This is an experimental demo with CPU. Duplicate the space for use in private.")
gr.Markdown(
"[![Duplicate this Space](https://huggingface.co/datasets/huggingface/badges/raw/main/duplicate-this-space-sm-dark.svg)](https://huggingface.co/spaces/Eddycrack864/UVR5?duplicate=true)\n\n"
)
with gr.Tabs():
with gr.TabItem("Process"):
with gr.Row():
self.arch_choice = gr.Dropdown(
choices=[VR_ARCH_TYPE, MDX_ARCH_TYPE], value=VR_ARCH_TYPE, # choices=[VR_ARCH_TYPE, MDX_ARCH_TYPE, DEMUCS_ARCH_TYPE], value=VR_ARCH_TYPE,
label=CHOOSE_PROC_METHOD_MAIN_LABEL, interactive=True)
self.model_choice = gr.Dropdown(
choices=self.get_local_models(VR_ARCH_TYPE), value=CHOOSE_MODEL,
label=SELECT_VR_MODEL_MAIN_LABEL+' 👋Select a model', interactive=True)
with gr.Row():
self.arch_setting1 = gr.Dropdown(
choices=VR_WINDOW, value=root.window_size_var.get(),
label=WINDOW_SIZE_MAIN_LABEL+' 👋Select one', interactive=True)
self.arch_setting2 = gr.Dropdown(
choices=VR_AGGRESSION, value=root.aggression_setting_var.get(),
label=AGGRESSION_SETTING_MAIN_LABEL, interactive=True)
with gr.Row():
self.use_gpu = gr.Checkbox(
label=GPU_CONVERSION_MAIN_LABEL, value=root.is_gpu_conversion_var.get(), interactive=True) #label='Rhythmic Transmutation Device', value=True, interactive=True)
self.primary_stem_only = gr.Checkbox(
label=f"{PRIMARY_STEM} only", value=root.is_primary_stem_only_var.get(), interactive=True)
self.secondary_stem_only = gr.Checkbox(
label=f"{SECONDARY_STEM} only", value=root.is_secondary_stem_only_var.get(), interactive=True)
self.sample_mode = gr.Checkbox(
label=SAMPLE_MODE_CHECKBOX(root.model_sample_mode_duration_var.get()),
value=root.model_sample_mode_var.get(), interactive=True)
with gr.Row():
self.input_filename = gr.Textbox(label="Input filename", value="temp.wav", interactive=True)
with gr.Row():
self.audio_in = gr.Audio(label="Input audio", interactive=True)
with gr.Row():
self.process_submit = gr.Button(START_PROCESSING, variant="primary")
with gr.Row():
self.primary_stem_out = gr.Audio(label=f"Output {PRIMARY_STEM}", interactive=False)
self.secondary_stem_out = gr.Audio(label=f"Output {SECONDARY_STEM}", interactive=False)
with gr.Row():
self.out_message = gr.Textbox(label="Output Message", interactive=False, show_progress=False)
with gr.TabItem("Settings"):
with gr.Tabs():
with gr.TabItem("Additional Settigns"):
self.wav_type = gr.Dropdown(choices=WAV_TYPE, label="Wav Type", value="PCM_16", interactive=True)
self.mp3_rate = gr.Dropdown(choices=MP3_BIT_RATES, label="MP3 Bitrate", value="320k",interactive=True)
self.arch_choice.change(
self.arch_select_update, inputs=self.arch_choice,
outputs=[self.model_choice, self.arch_setting1, self.arch_setting2])
self.model_choice.change(
self.model_select_update, inputs=[self.arch_choice, self.model_choice],
outputs=[self.primary_stem_only, self.secondary_stem_only, self.primary_stem_out, self.secondary_stem_out])
self.checkbox_set_root_value(self.use_gpu, 'is_gpu_conversion_var')
self.checkbox_set_root_value(self.sample_mode, 'model_sample_mode_var')
self.set_checkboxes_exclusive(
[self.primary_stem_only, self.secondary_stem_only],
[lambda value: root.is_primary_stem_only_var.set(value), lambda value: root.is_secondary_stem_only_var.set(value)])
self.process_submit.click(
self.process,
inputs=[self.audio_in, self.input_filename, self.model_choice, self.arch_choice, self.arch_setting1, self.arch_setting2],
outputs=[self.primary_stem_out, self.secondary_stem_out, self.out_message])
def launch(self, **kwargs):
self.app.queue().launch(**kwargs)
uvr = UVRInterface()
uvr.cached_sources_clear()
webui = UVRWebUI(uvr, online_data_path='models/download_checks.json')
print(webui.models_url)
model_dict = webui.models_url
import os
import wget
for category, models in model_dict.items():
if category in ['VR Arc', 'MDX-Net']:
if category == 'VR Arc':
model_path = 'models/VR_Models'
elif category == 'MDX-Net':
model_path = 'models/MDX_Net_Models'
for model_name, model_url in models.items():
cmd = f"aria2c --optimize-concurrent-downloads --console-log-level=error --summary-interval=10 -j5 -x16 -s16 -k1M -c -d {model_path} -Z {model_url}"
os.system(cmd)
print("Models downloaded successfully.")
webui = UVRWebUI(uvr, online_data_path='models/download_checks.json')
webui.launch() |