UVR5 / separate.py
Eddycrack864's picture
Upload separate.py
ede719c verified
from __future__ import annotations
from typing import TYPE_CHECKING
from demucs.apply import apply_model, demucs_segments
from demucs.hdemucs import HDemucs
from demucs.model_v2 import auto_load_demucs_model_v2
from demucs.pretrained import get_model as _gm
from demucs.utils import apply_model_v1
from demucs.utils import apply_model_v2
from lib_v5 import spec_utils
from lib_v5.vr_network import nets
from lib_v5.vr_network import nets_new
#from lib_v5.vr_network.model_param_init import ModelParameters
from pathlib import Path
from gui_data.constants import *
from gui_data.error_handling import *
import audioread
import gzip
import librosa
import math
import numpy as np
import onnxruntime as ort
import os
import torch
import warnings
import pydub
import soundfile as sf
import traceback
import lib_v5.mdxnet as MdxnetSet
if TYPE_CHECKING:
from UVR import ModelData
warnings.filterwarnings("ignore")
cpu = torch.device('cpu')
class SeperateAttributes:
def __init__(self, model_data: ModelData, process_data: dict, main_model_primary_stem_4_stem=None, main_process_method=None):
self.list_all_models: list
self.process_data = process_data
self.progress_value = 0
self.set_progress_bar = process_data['set_progress_bar']
self.write_to_console = process_data['write_to_console']
self.audio_file = process_data['audio_file']
self.audio_file_base = process_data['audio_file_base']
self.export_path = process_data['export_path']
self.cached_source_callback = process_data['cached_source_callback']
self.cached_model_source_holder = process_data['cached_model_source_holder']
self.is_4_stem_ensemble = process_data['is_4_stem_ensemble']
self.list_all_models = process_data['list_all_models']
self.process_iteration = process_data['process_iteration']
self.mixer_path = model_data.mixer_path
self.model_samplerate = model_data.model_samplerate
self.model_capacity = model_data.model_capacity
self.is_vr_51_model = model_data.is_vr_51_model
self.is_pre_proc_model = model_data.is_pre_proc_model
self.is_secondary_model_activated = model_data.is_secondary_model_activated if not self.is_pre_proc_model else False
self.is_secondary_model = model_data.is_secondary_model if not self.is_pre_proc_model else True
self.process_method = model_data.process_method
self.model_path = model_data.model_path
self.model_name = model_data.model_name
self.model_basename = model_data.model_basename
self.wav_type_set = model_data.wav_type_set
self.mp3_bit_set = model_data.mp3_bit_set
self.save_format = model_data.save_format
self.is_gpu_conversion = model_data.is_gpu_conversion
self.is_normalization = model_data.is_normalization
self.is_primary_stem_only = model_data.is_primary_stem_only if not self.is_secondary_model else model_data.is_primary_model_primary_stem_only
self.is_secondary_stem_only = model_data.is_secondary_stem_only if not self.is_secondary_model else model_data.is_primary_model_secondary_stem_only
self.is_ensemble_mode = model_data.is_ensemble_mode
self.secondary_model = model_data.secondary_model #
self.primary_model_primary_stem = model_data.primary_model_primary_stem
self.primary_stem = model_data.primary_stem #
self.secondary_stem = model_data.secondary_stem #
self.is_invert_spec = model_data.is_invert_spec #
self.is_mixer_mode = model_data.is_mixer_mode #
self.secondary_model_scale = model_data.secondary_model_scale #
self.is_demucs_pre_proc_model_inst_mix = model_data.is_demucs_pre_proc_model_inst_mix #
self.primary_source_map = {}
self.secondary_source_map = {}
self.primary_source = None
self.secondary_source = None
self.secondary_source_primary = None
self.secondary_source_secondary = None
if not model_data.process_method == DEMUCS_ARCH_TYPE:
if process_data['is_ensemble_master'] and not self.is_4_stem_ensemble:
if not model_data.ensemble_primary_stem == self.primary_stem:
self.is_primary_stem_only, self.is_secondary_stem_only = self.is_secondary_stem_only, self.is_primary_stem_only
if self.is_secondary_model and not process_data['is_ensemble_master']:
if not self.primary_model_primary_stem == self.primary_stem and not main_model_primary_stem_4_stem:
self.is_primary_stem_only, self.is_secondary_stem_only = self.is_secondary_stem_only, self.is_primary_stem_only
if main_model_primary_stem_4_stem:
self.is_primary_stem_only = True if main_model_primary_stem_4_stem == self.primary_stem else False
self.is_secondary_stem_only = True if not main_model_primary_stem_4_stem == self.primary_stem else False
if self.is_pre_proc_model:
self.is_primary_stem_only = True if self.primary_stem == INST_STEM else False
self.is_secondary_stem_only = True if self.secondary_stem == INST_STEM else False
if model_data.process_method == MDX_ARCH_TYPE:
self.is_mdx_ckpt = model_data.is_mdx_ckpt
self.primary_model_name, self.primary_sources = self.cached_source_callback(MDX_ARCH_TYPE, model_name=self.model_basename)
self.is_denoise = model_data.is_denoise
self.mdx_batch_size = model_data.mdx_batch_size
self.compensate = model_data.compensate
self.dim_f, self.dim_t = model_data.mdx_dim_f_set, 2**model_data.mdx_dim_t_set
self.n_fft = model_data.mdx_n_fft_scale_set
self.chunks = model_data.chunks
self.margin = model_data.margin
self.adjust = 1
self.dim_c = 4
self.hop = 1024
if self.is_gpu_conversion >= 0 and torch.cuda.is_available():
self.device, self.run_type = torch.device('cuda:0'), ['CUDAExecutionProvider']
else:
self.device, self.run_type = torch.device('cpu'), ['CPUExecutionProvider']
if model_data.process_method == DEMUCS_ARCH_TYPE:
self.demucs_stems = model_data.demucs_stems if not main_process_method in [MDX_ARCH_TYPE, VR_ARCH_TYPE] else None
self.secondary_model_4_stem = model_data.secondary_model_4_stem
self.secondary_model_4_stem_scale = model_data.secondary_model_4_stem_scale
self.primary_stem = model_data.ensemble_primary_stem if process_data['is_ensemble_master'] else model_data.primary_stem
self.secondary_stem = model_data.ensemble_secondary_stem if process_data['is_ensemble_master'] else model_data.secondary_stem
self.is_chunk_demucs = model_data.is_chunk_demucs
self.segment = model_data.segment
self.demucs_version = model_data.demucs_version
self.demucs_source_list = model_data.demucs_source_list
self.demucs_source_map = model_data.demucs_source_map
self.is_demucs_combine_stems = model_data.is_demucs_combine_stems
self.demucs_stem_count = model_data.demucs_stem_count
self.pre_proc_model = model_data.pre_proc_model
if self.is_secondary_model and not process_data['is_ensemble_master']:
if not self.demucs_stem_count == 2 and model_data.primary_model_primary_stem == INST_STEM:
self.primary_stem = VOCAL_STEM
self.secondary_stem = INST_STEM
else:
self.primary_stem = model_data.primary_model_primary_stem
self.secondary_stem = STEM_PAIR_MAPPER[self.primary_stem]
if self.is_chunk_demucs:
self.chunks_demucs = model_data.chunks_demucs
self.margin_demucs = model_data.margin_demucs
else:
self.chunks_demucs = 0
self.margin_demucs = 44100
self.shifts = model_data.shifts
self.is_split_mode = model_data.is_split_mode if not self.demucs_version == DEMUCS_V4 else True
self.overlap = model_data.overlap
self.primary_model_name, self.primary_sources = self.cached_source_callback(DEMUCS_ARCH_TYPE, model_name=self.model_basename)
if model_data.process_method == VR_ARCH_TYPE:
self.primary_model_name, self.primary_sources = self.cached_source_callback(VR_ARCH_TYPE, model_name=self.model_basename)
self.mp = model_data.vr_model_param
self.high_end_process = model_data.is_high_end_process
self.is_tta = model_data.is_tta
self.is_post_process = model_data.is_post_process
self.is_gpu_conversion = model_data.is_gpu_conversion
self.batch_size = model_data.batch_size
self.window_size = model_data.window_size
self.input_high_end_h = None
self.post_process_threshold = model_data.post_process_threshold
self.aggressiveness = {'value': model_data.aggression_setting,
'split_bin': self.mp.param['band'][1]['crop_stop'],
'aggr_correction': self.mp.param.get('aggr_correction')}
def start_inference_console_write(self):
if self.is_secondary_model and not self.is_pre_proc_model:
self.write_to_console(INFERENCE_STEP_2_SEC(self.process_method, self.model_basename))
if self.is_pre_proc_model:
self.write_to_console(INFERENCE_STEP_2_PRE(self.process_method, self.model_basename))
def running_inference_console_write(self, is_no_write=False):
self.write_to_console(DONE, base_text='') if not is_no_write else None
self.set_progress_bar(0.05) if not is_no_write else None
if self.is_secondary_model and not self.is_pre_proc_model:
self.write_to_console(INFERENCE_STEP_1_SEC)
elif self.is_pre_proc_model:
self.write_to_console(INFERENCE_STEP_1_PRE)
else:
self.write_to_console(INFERENCE_STEP_1)
def running_inference_progress_bar(self, length, is_match_mix=False):
if not is_match_mix:
self.progress_value += 1
if (0.8/length*self.progress_value) >= 0.8:
length = self.progress_value + 1
self.set_progress_bar(0.1, (0.8/length*self.progress_value))
def load_cached_sources(self, is_4_stem_demucs=False):
if self.is_secondary_model and not self.is_pre_proc_model:
self.write_to_console(INFERENCE_STEP_2_SEC_CACHED_MODOEL(self.process_method, self.model_basename))
elif self.is_pre_proc_model:
self.write_to_console(INFERENCE_STEP_2_PRE_CACHED_MODOEL(self.process_method, self.model_basename))
else:
self.write_to_console(INFERENCE_STEP_2_PRIMARY_CACHED)
if not is_4_stem_demucs:
primary_stem, secondary_stem = gather_sources(self.primary_stem, self.secondary_stem, self.primary_sources)
return primary_stem, secondary_stem
def cache_source(self, secondary_sources):
model_occurrences = self.list_all_models.count(self.model_basename)
if not model_occurrences <= 1:
if self.process_method == MDX_ARCH_TYPE:
self.cached_model_source_holder(MDX_ARCH_TYPE, secondary_sources, self.model_basename)
if self.process_method == VR_ARCH_TYPE:
self.cached_model_source_holder(VR_ARCH_TYPE, secondary_sources, self.model_basename)
if self.process_method == DEMUCS_ARCH_TYPE:
self.cached_model_source_holder(DEMUCS_ARCH_TYPE, secondary_sources, self.model_basename)
def write_audio(self, stem_path, stem_source, samplerate, secondary_model_source=None, model_scale=None):
if not self.is_secondary_model:
if self.is_secondary_model_activated:
if isinstance(secondary_model_source, np.ndarray):
secondary_model_scale = model_scale if model_scale else self.secondary_model_scale
stem_source = spec_utils.average_dual_sources(stem_source, secondary_model_source, secondary_model_scale)
sf.write(stem_path, stem_source, samplerate, subtype=self.wav_type_set)
save_format(stem_path, self.save_format, self.mp3_bit_set) if not self.is_ensemble_mode else None
self.write_to_console(DONE, base_text='')
self.set_progress_bar(0.95)
def run_mixer(self, mix, sources):
try:
if self.is_mixer_mode and len(sources) == 4:
mixer = MdxnetSet.Mixer(self.device, self.mixer_path).eval()
with torch.no_grad():
mix = torch.tensor(mix, dtype=torch.float32)
sources_ = torch.tensor(sources).detach()
x = torch.cat([sources_, mix.unsqueeze(0)], 0)
sources_ = mixer(x)
final_source = np.array(sources_)
else:
final_source = sources
except Exception as e:
error_name = f'{type(e).__name__}'
traceback_text = ''.join(traceback.format_tb(e.__traceback__))
message = f'{error_name}: "{e}"\n{traceback_text}"'
print('Mixer Failed: ', message)
final_source = sources
return final_source
class SeperateMDX(SeperateAttributes):
def seperate(self):
samplerate = 44100
if self.primary_model_name == self.model_basename and self.primary_sources:
self.primary_source, self.secondary_source = self.load_cached_sources()
else:
self.start_inference_console_write()
if self.is_mdx_ckpt:
model_params = torch.load(self.model_path, map_location=lambda storage, loc: storage)['hyper_parameters']
self.dim_c, self.hop = model_params['dim_c'], model_params['hop_length']
separator = MdxnetSet.ConvTDFNet(**model_params)
self.model_run = separator.load_from_checkpoint(self.model_path).to(self.device).eval()
else:
ort_ = ort.InferenceSession(self.model_path, providers=self.run_type)
self.model_run = lambda spek:ort_.run(None, {'input': spek.cpu().numpy()})[0]
self.initialize_model_settings()
self.running_inference_console_write()
mdx_net_cut = True if self.primary_stem in MDX_NET_FREQ_CUT else False
mix, raw_mix, samplerate = prepare_mix(self.audio_file, self.chunks, self.margin, mdx_net_cut=mdx_net_cut)
source = self.demix_base(mix, is_ckpt=self.is_mdx_ckpt)[0]
self.write_to_console(DONE, base_text='')
if self.is_secondary_model_activated:
if self.secondary_model:
self.secondary_source_primary, self.secondary_source_secondary = process_secondary_model(self.secondary_model, self.process_data, main_process_method=self.process_method)
if not self.is_secondary_stem_only:
self.write_to_console(f'{SAVING_STEM[0]}{self.primary_stem}{SAVING_STEM[1]}') if not self.is_secondary_model else None
primary_stem_path = os.path.join(self.export_path, f'{self.audio_file_base}_({self.primary_stem}).wav')
if not isinstance(self.primary_source, np.ndarray):
self.primary_source = spec_utils.normalize(source, self.is_normalization).T
self.primary_source_map = {self.primary_stem: self.primary_source}
self.write_audio(primary_stem_path, self.primary_source, samplerate, self.secondary_source_primary)
if not self.is_primary_stem_only:
self.write_to_console(f'{SAVING_STEM[0]}{self.secondary_stem}{SAVING_STEM[1]}') if not self.is_secondary_model else None
secondary_stem_path = os.path.join(self.export_path, f'{self.audio_file_base}_({self.secondary_stem}).wav')
if not isinstance(self.secondary_source, np.ndarray):
raw_mix = self.demix_base(raw_mix, is_match_mix=True)[0] if mdx_net_cut else raw_mix
self.secondary_source, raw_mix = spec_utils.normalize_two_stem(source*self.compensate, raw_mix, self.is_normalization)
if self.is_invert_spec:
self.secondary_source = spec_utils.invert_stem(raw_mix, self.secondary_source)
else:
self.secondary_source = (-self.secondary_source.T+raw_mix.T)
self.secondary_source_map = {self.secondary_stem: self.secondary_source}
self.write_audio(secondary_stem_path, self.secondary_source, samplerate, self.secondary_source_secondary)
torch.cuda.empty_cache()
secondary_sources = {**self.primary_source_map, **self.secondary_source_map}
self.cache_source(secondary_sources)
if self.is_secondary_model:
return secondary_sources
def initialize_model_settings(self):
self.n_bins = self.n_fft//2+1
self.trim = self.n_fft//2
self.chunk_size = self.hop * (self.dim_t-1)
self.window = torch.hann_window(window_length=self.n_fft, periodic=False).to(self.device)
self.freq_pad = torch.zeros([1, self.dim_c, self.n_bins-self.dim_f, self.dim_t]).to(self.device)
self.gen_size = self.chunk_size-2*self.trim
def initialize_mix(self, mix, is_ckpt=False):
if is_ckpt:
pad = self.gen_size + self.trim - ((mix.shape[-1]) % self.gen_size)
mixture = np.concatenate((np.zeros((2, self.trim), dtype='float32'),mix, np.zeros((2, pad), dtype='float32')), 1)
num_chunks = mixture.shape[-1] // self.gen_size
mix_waves = [mixture[:, i * self.gen_size: i * self.gen_size + self.chunk_size] for i in range(num_chunks)]
else:
mix_waves = []
n_sample = mix.shape[1]
pad = self.gen_size - n_sample%self.gen_size
mix_p = np.concatenate((np.zeros((2,self.trim)), mix, np.zeros((2,pad)), np.zeros((2,self.trim))), 1)
i = 0
while i < n_sample + pad:
waves = np.array(mix_p[:, i:i+self.chunk_size])
mix_waves.append(waves)
i += self.gen_size
mix_waves = torch.tensor(mix_waves, dtype=torch.float32).to(self.device)
return mix_waves, pad
def demix_base(self, mix, is_ckpt=False, is_match_mix=False):
chunked_sources = []
for slice in mix:
sources = []
tar_waves_ = []
mix_p = mix[slice]
mix_waves, pad = self.initialize_mix(mix_p, is_ckpt=is_ckpt)
mix_waves = mix_waves.split(self.mdx_batch_size)
pad = mix_p.shape[-1] if is_ckpt else -pad
with torch.no_grad():
for mix_wave in mix_waves:
self.running_inference_progress_bar(len(mix)*len(mix_waves), is_match_mix=is_match_mix)
tar_waves = self.run_model(mix_wave, is_ckpt=is_ckpt, is_match_mix=is_match_mix)
tar_waves_.append(tar_waves)
tar_waves_ = np.vstack(tar_waves_)[:, :, self.trim:-self.trim] if is_ckpt else tar_waves_
tar_waves = np.concatenate(tar_waves_, axis=-1)[:, :pad]
start = 0 if slice == 0 else self.margin
end = None if slice == list(mix.keys())[::-1][0] or self.margin == 0 else -self.margin
sources.append(tar_waves[:,start:end]*(1/self.adjust))
chunked_sources.append(sources)
sources = np.concatenate(chunked_sources, axis=-1)
return sources
def run_model(self, mix, is_ckpt=False, is_match_mix=False):
spek = self.stft(mix.to(self.device))*self.adjust
spek[:, :, :3, :] *= 0
if is_match_mix:
spec_pred = spek.cpu().numpy()
else:
spec_pred = -self.model_run(-spek)*0.5+self.model_run(spek)*0.5 if self.is_denoise else self.model_run(spek)
if is_ckpt:
return self.istft(spec_pred).cpu().detach().numpy()
else:
return self.istft(torch.tensor(spec_pred).to(self.device)).to(cpu)[:,:,self.trim:-self.trim].transpose(0,1).reshape(2, -1).numpy()
def stft(self, x):
x = x.reshape([-1, self.chunk_size])
x = torch.stft(x, n_fft=self.n_fft, hop_length=self.hop, window=self.window, center=True,return_complex=True)
x=torch.view_as_real(x)
x = x.permute([0,3,1,2])
x = x.reshape([-1,2,2,self.n_bins,self.dim_t]).reshape([-1,self.dim_c,self.n_bins,self.dim_t])
return x[:,:,:self.dim_f]
def istft(self, x, freq_pad=None):
freq_pad = self.freq_pad.repeat([x.shape[0],1,1,1]) if freq_pad is None else freq_pad
x = torch.cat([x, freq_pad], -2)
x = x.reshape([-1,2,2,self.n_bins,self.dim_t]).reshape([-1,2,self.n_bins,self.dim_t])
x = x.permute([0,2,3,1])
x=x.contiguous()
x=torch.view_as_complex(x)
x = torch.istft(x, n_fft=self.n_fft, hop_length=self.hop, window=self.window, center=True)
return x.reshape([-1,2,self.chunk_size])
class SeperateDemucs(SeperateAttributes):
def seperate(self):
samplerate = 44100
source = None
model_scale = None
stem_source = None
stem_source_secondary = None
inst_mix = None
inst_raw_mix = None
raw_mix = None
inst_source = None
is_no_write = False
is_no_piano_guitar = False
if self.primary_model_name == self.model_basename and type(self.primary_sources) is dict and not self.pre_proc_model:
self.primary_source, self.secondary_source = self.load_cached_sources()
elif self.primary_model_name == self.model_basename and isinstance(self.primary_sources, np.ndarray) and not self.pre_proc_model:
source = self.primary_sources
self.load_cached_sources(is_4_stem_demucs=True)
else:
self.start_inference_console_write()
if self.is_gpu_conversion >= 0:
self.device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
else:
self.device = torch.device('cpu')
if self.demucs_version == DEMUCS_V1:
if str(self.model_path).endswith(".gz"):
self.model_path = gzip.open(self.model_path, "rb")
klass, args, kwargs, state = torch.load(self.model_path)
self.demucs = klass(*args, **kwargs)
self.demucs.to(self.device)
self.demucs.load_state_dict(state)
elif self.demucs_version == DEMUCS_V2:
self.demucs = auto_load_demucs_model_v2(self.demucs_source_list, self.model_path)
self.demucs.to(self.device)
self.demucs.load_state_dict(torch.load(self.model_path))
self.demucs.eval()
else:
self.demucs = HDemucs(sources=self.demucs_source_list)
self.demucs = _gm(name=os.path.splitext(os.path.basename(self.model_path))[0],
repo=Path(os.path.dirname(self.model_path)))
self.demucs = demucs_segments(self.segment, self.demucs)
self.demucs.to(self.device)
self.demucs.eval()
if self.pre_proc_model:
if self.primary_stem not in [VOCAL_STEM, INST_STEM]:
is_no_write = True
self.write_to_console(DONE, base_text='')
mix_no_voc = process_secondary_model(self.pre_proc_model, self.process_data, is_pre_proc_model=True)
inst_mix, inst_raw_mix, inst_samplerate = prepare_mix(mix_no_voc[INST_STEM], self.chunks_demucs, self.margin_demucs)
self.process_iteration()
self.running_inference_console_write(is_no_write=is_no_write)
inst_source = self.demix_demucs(inst_mix)
inst_source = self.run_mixer(inst_raw_mix, inst_source)
self.process_iteration()
self.running_inference_console_write(is_no_write=is_no_write) if not self.pre_proc_model else None
mix, raw_mix, samplerate = prepare_mix(self.audio_file, self.chunks_demucs, self.margin_demucs)
if self.primary_model_name == self.model_basename and isinstance(self.primary_sources, np.ndarray) and self.pre_proc_model:
source = self.primary_sources
else:
source = self.demix_demucs(mix)
source = self.run_mixer(raw_mix, source)
self.write_to_console(DONE, base_text='')
del self.demucs
torch.cuda.empty_cache()
if isinstance(inst_source, np.ndarray):
source_reshape = spec_utils.reshape_sources(inst_source[self.demucs_source_map[VOCAL_STEM]], source[self.demucs_source_map[VOCAL_STEM]])
inst_source[self.demucs_source_map[VOCAL_STEM]] = source_reshape
source = inst_source
if isinstance(source, np.ndarray):
if len(source) == 2:
self.demucs_source_map = DEMUCS_2_SOURCE_MAPPER
else:
self.demucs_source_map = DEMUCS_6_SOURCE_MAPPER if len(source) == 6 else DEMUCS_4_SOURCE_MAPPER
if len(source) == 6 and self.process_data['is_ensemble_master'] or len(source) == 6 and self.is_secondary_model:
is_no_piano_guitar = True
six_stem_other_source = list(source)
six_stem_other_source = [i for n, i in enumerate(source) if n in [self.demucs_source_map[OTHER_STEM], self.demucs_source_map[GUITAR_STEM], self.demucs_source_map[PIANO_STEM]]]
other_source = np.zeros_like(six_stem_other_source[0])
for i in six_stem_other_source:
other_source += i
source_reshape = spec_utils.reshape_sources(source[self.demucs_source_map[OTHER_STEM]], other_source)
source[self.demucs_source_map[OTHER_STEM]] = source_reshape
if (self.demucs_stems == ALL_STEMS and not self.process_data['is_ensemble_master']) or self.is_4_stem_ensemble:
self.cache_source(source)
for stem_name, stem_value in self.demucs_source_map.items():
if self.is_secondary_model_activated and not self.is_secondary_model and not stem_value >= 4:
if self.secondary_model_4_stem[stem_value]:
model_scale = self.secondary_model_4_stem_scale[stem_value]
stem_source_secondary = process_secondary_model(self.secondary_model_4_stem[stem_value], self.process_data, main_model_primary_stem_4_stem=stem_name, is_4_stem_demucs=True)
if isinstance(stem_source_secondary, np.ndarray):
stem_source_secondary = stem_source_secondary[1 if self.secondary_model_4_stem[stem_value].demucs_stem_count == 2 else stem_value]
stem_source_secondary = spec_utils.normalize(stem_source_secondary, self.is_normalization).T
elif type(stem_source_secondary) is dict:
stem_source_secondary = stem_source_secondary[stem_name]
stem_source_secondary = None if stem_value >= 4 else stem_source_secondary
self.write_to_console(f'{SAVING_STEM[0]}{stem_name}{SAVING_STEM[1]}') if not self.is_secondary_model else None
stem_path = os.path.join(self.export_path, f'{self.audio_file_base}_({stem_name}).wav')
stem_source = spec_utils.normalize(source[stem_value], self.is_normalization).T
self.write_audio(stem_path, stem_source, samplerate, secondary_model_source=stem_source_secondary, model_scale=model_scale)
if self.is_secondary_model:
return source
else:
if self.is_secondary_model_activated:
if self.secondary_model:
self.secondary_source_primary, self.secondary_source_secondary = process_secondary_model(self.secondary_model, self.process_data, main_process_method=self.process_method)
if not self.is_secondary_stem_only:
self.write_to_console(f'{SAVING_STEM[0]}{self.primary_stem}{SAVING_STEM[1]}') if not self.is_secondary_model else None
primary_stem_path = os.path.join(self.export_path, f'{self.audio_file_base}_({self.primary_stem}).wav')
if not isinstance(self.primary_source, np.ndarray):
self.primary_source = spec_utils.normalize(source[self.demucs_source_map[self.primary_stem]], self.is_normalization).T
self.primary_source_map = {self.primary_stem: self.primary_source}
self.write_audio(primary_stem_path, self.primary_source, samplerate, self.secondary_source_primary)
if not self.is_primary_stem_only:
def secondary_save(sec_stem_name, source, raw_mixture=None, is_inst_mixture=False):
secondary_source = self.secondary_source if not is_inst_mixture else None
self.write_to_console(f'{SAVING_STEM[0]}{sec_stem_name}{SAVING_STEM[1]}') if not self.is_secondary_model else None
secondary_stem_path = os.path.join(self.export_path, f'{self.audio_file_base}_({sec_stem_name}).wav')
secondary_source_secondary = None
if not isinstance(secondary_source, np.ndarray):
if self.is_demucs_combine_stems:
source = list(source)
if is_inst_mixture:
source = [i for n, i in enumerate(source) if not n in [self.demucs_source_map[self.primary_stem], self.demucs_source_map[VOCAL_STEM]]]
else:
source.pop(self.demucs_source_map[self.primary_stem])
source = source[:len(source) - 2] if is_no_piano_guitar else source
secondary_source = np.zeros_like(source[0])
for i in source:
secondary_source += i
secondary_source = spec_utils.normalize(secondary_source, self.is_normalization).T
else:
if not isinstance(raw_mixture, np.ndarray):
raw_mixture = prepare_mix(self.audio_file, self.chunks_demucs, self.margin_demucs, is_missing_mix=True)
secondary_source, raw_mixture = spec_utils.normalize_two_stem(source[self.demucs_source_map[self.primary_stem]], raw_mixture, self.is_normalization)
if self.is_invert_spec:
secondary_source = spec_utils.invert_stem(raw_mixture, secondary_source)
else:
raw_mixture = spec_utils.reshape_sources(secondary_source, raw_mixture)
secondary_source = (-secondary_source.T+raw_mixture.T)
if not is_inst_mixture:
self.secondary_source = secondary_source
secondary_source_secondary = self.secondary_source_secondary
self.secondary_source_map = {self.secondary_stem: self.secondary_source}
self.write_audio(secondary_stem_path, secondary_source, samplerate, secondary_source_secondary)
secondary_save(self.secondary_stem, source, raw_mixture=raw_mix)
if self.is_demucs_pre_proc_model_inst_mix and self.pre_proc_model and not self.is_4_stem_ensemble:
secondary_save(f"{self.secondary_stem} {INST_STEM}", source, raw_mixture=inst_raw_mix, is_inst_mixture=True)
secondary_sources = {**self.primary_source_map, **self.secondary_source_map}
self.cache_source(secondary_sources)
if self.is_secondary_model:
return secondary_sources
def demix_demucs(self, mix):
processed = {}
set_progress_bar = None if self.is_chunk_demucs else self.set_progress_bar
for nmix in mix:
self.progress_value += 1
self.set_progress_bar(0.1, (0.8/len(mix)*self.progress_value)) if self.is_chunk_demucs else None
cmix = mix[nmix]
cmix = torch.tensor(cmix, dtype=torch.float32)
ref = cmix.mean(0)
cmix = (cmix - ref.mean()) / ref.std()
mix_infer = cmix
with torch.no_grad():
if self.demucs_version == DEMUCS_V1:
sources = apply_model_v1(self.demucs,
mix_infer.to(self.device),
self.shifts,
self.is_split_mode,
set_progress_bar=set_progress_bar)
elif self.demucs_version == DEMUCS_V2:
sources = apply_model_v2(self.demucs,
mix_infer.to(self.device),
self.shifts,
self.is_split_mode,
self.overlap,
set_progress_bar=set_progress_bar)
else:
sources = apply_model(self.demucs,
mix_infer[None],
self.shifts,
self.is_split_mode,
self.overlap,
static_shifts=1 if self.shifts == 0 else self.shifts,
set_progress_bar=set_progress_bar,
device=self.device)[0]
sources = (sources * ref.std() + ref.mean()).cpu().numpy()
sources[[0,1]] = sources[[1,0]]
start = 0 if nmix == 0 else self.margin_demucs
end = None if nmix == list(mix.keys())[::-1][0] else -self.margin_demucs
if self.margin_demucs == 0:
end = None
processed[nmix] = sources[:,:,start:end].copy()
sources = list(processed.values())
sources = np.concatenate(sources, axis=-1)
return sources
class SeperateVR(SeperateAttributes):
def seperate(self):
if self.primary_model_name == self.model_basename and self.primary_sources:
self.primary_source, self.secondary_source = self.load_cached_sources()
else:
self.start_inference_console_write()
if self.is_gpu_conversion >= 0:
if OPERATING_SYSTEM == 'Darwin':
device = torch.device('mps' if torch.backends.mps.is_available() else 'cpu')
else:
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
else:
device = torch.device('cpu')
nn_arch_sizes = [
31191, # default
33966, 56817, 123821, 123812, 129605, 218409, 537238, 537227]
vr_5_1_models = [56817, 218409]
model_size = math.ceil(os.stat(self.model_path).st_size / 1024)
nn_arch_size = min(nn_arch_sizes, key=lambda x:abs(x-model_size))
if nn_arch_size in vr_5_1_models or self.is_vr_51_model:
self.model_run = nets_new.CascadedNet(self.mp.param['bins'] * 2, nn_arch_size, nout=self.model_capacity[0], nout_lstm=self.model_capacity[1])
else:
self.model_run = nets.determine_model_capacity(self.mp.param['bins'] * 2, nn_arch_size)
self.model_run.load_state_dict(torch.load(self.model_path, map_location=cpu))
self.model_run.to(device)
self.running_inference_console_write()
y_spec, v_spec = self.inference_vr(self.loading_mix(), device, self.aggressiveness)
self.write_to_console(DONE, base_text='')
if self.is_secondary_model_activated:
if self.secondary_model:
self.secondary_source_primary, self.secondary_source_secondary = process_secondary_model(self.secondary_model, self.process_data, main_process_method=self.process_method)
if not self.is_secondary_stem_only:
self.write_to_console(f'{SAVING_STEM[0]}{self.primary_stem}{SAVING_STEM[1]}') if not self.is_secondary_model else None
primary_stem_path = os.path.join(self.export_path, f'{self.audio_file_base}_({self.primary_stem}).wav')
if not isinstance(self.primary_source, np.ndarray):
self.primary_source = spec_utils.normalize(self.spec_to_wav(y_spec), self.is_normalization).T
if not self.model_samplerate == 44100:
self.primary_source = librosa.resample(self.primary_source.T, orig_sr=self.model_samplerate, target_sr=44100).T
self.primary_source_map = {self.primary_stem: self.primary_source}
self.write_audio(primary_stem_path, self.primary_source, 44100, self.secondary_source_primary)
if not self.is_primary_stem_only:
self.write_to_console(f'{SAVING_STEM[0]}{self.secondary_stem}{SAVING_STEM[1]}') if not self.is_secondary_model else None
secondary_stem_path = os.path.join(self.export_path, f'{self.audio_file_base}_({self.secondary_stem}).wav')
if not isinstance(self.secondary_source, np.ndarray):
self.secondary_source = self.spec_to_wav(v_spec)
self.secondary_source = spec_utils.normalize(self.spec_to_wav(v_spec), self.is_normalization).T
if not self.model_samplerate == 44100:
self.secondary_source = librosa.resample(self.secondary_source.T, orig_sr=self.model_samplerate, target_sr=44100).T
self.secondary_source_map = {self.secondary_stem: self.secondary_source}
self.write_audio(secondary_stem_path, self.secondary_source, 44100, self.secondary_source_secondary)
torch.cuda.empty_cache()
secondary_sources = {**self.primary_source_map, **self.secondary_source_map}
self.cache_source(secondary_sources)
if self.is_secondary_model:
return secondary_sources
def loading_mix(self):
X_wave, X_spec_s = {}, {}
bands_n = len(self.mp.param['band'])
for d in range(bands_n, 0, -1):
bp = self.mp.param['band'][d]
if OPERATING_SYSTEM == 'Darwin':
wav_resolution = 'polyphase' if SYSTEM_PROC == ARM or ARM in SYSTEM_ARCH else bp['res_type']
else:
wav_resolution = bp['res_type']
if d == bands_n: # high-end band
X_wave[d], _ = librosa.load(self.audio_file, bp['sr'], False, dtype=np.float32, res_type=wav_resolution)
if not np.any(X_wave[d]) and self.audio_file.endswith('.mp3'):
X_wave[d] = rerun_mp3(self.audio_file, bp['sr'])
if X_wave[d].ndim == 1:
X_wave[d] = np.asarray([X_wave[d], X_wave[d]])
else: # lower bands
X_wave[d] = librosa.resample(X_wave[d+1], self.mp.param['band'][d+1]['sr'], bp['sr'], res_type=wav_resolution)
X_spec_s[d] = spec_utils.wave_to_spectrogram_mt(X_wave[d], bp['hl'], bp['n_fft'], self.mp.param['mid_side'],
self.mp.param['mid_side_b2'], self.mp.param['reverse'])
if d == bands_n and self.high_end_process != 'none':
self.input_high_end_h = (bp['n_fft']//2 - bp['crop_stop']) + (self.mp.param['pre_filter_stop'] - self.mp.param['pre_filter_start'])
self.input_high_end = X_spec_s[d][:, bp['n_fft']//2-self.input_high_end_h:bp['n_fft']//2, :]
X_spec = spec_utils.combine_spectrograms(X_spec_s, self.mp)
del X_wave, X_spec_s
return X_spec
def inference_vr(self, X_spec, device, aggressiveness):
def _execute(X_mag_pad, roi_size):
X_dataset = []
patches = (X_mag_pad.shape[2] - 2 * self.model_run.offset) // roi_size
total_iterations = patches//self.batch_size if not self.is_tta else (patches//self.batch_size)*2
for i in range(patches):
start = i * roi_size
X_mag_window = X_mag_pad[:, :, start:start + self.window_size]
X_dataset.append(X_mag_window)
X_dataset = np.asarray(X_dataset)
self.model_run.eval()
with torch.no_grad():
mask = []
for i in range(0, patches, self.batch_size):
self.progress_value += 1
if self.progress_value >= total_iterations:
self.progress_value = total_iterations
self.set_progress_bar(0.1, 0.8/total_iterations*self.progress_value)
X_batch = X_dataset[i: i + self.batch_size]
X_batch = torch.from_numpy(X_batch).to(device)
pred = self.model_run.predict_mask(X_batch)
if not pred.size()[3] > 0:
raise Exception(ERROR_MAPPER[WINDOW_SIZE_ERROR])
pred = pred.detach().cpu().numpy()
pred = np.concatenate(pred, axis=2)
mask.append(pred)
if len(mask) == 0:
raise Exception(ERROR_MAPPER[WINDOW_SIZE_ERROR])
mask = np.concatenate(mask, axis=2)
return mask
def postprocess(mask, X_mag, X_phase):
is_non_accom_stem = False
for stem in NON_ACCOM_STEMS:
if stem == self.primary_stem:
is_non_accom_stem = True
mask = spec_utils.adjust_aggr(mask, is_non_accom_stem, aggressiveness)
if self.is_post_process:
mask = spec_utils.merge_artifacts(mask, thres=self.post_process_threshold)
y_spec = mask * X_mag * np.exp(1.j * X_phase)
v_spec = (1 - mask) * X_mag * np.exp(1.j * X_phase)
return y_spec, v_spec
X_mag, X_phase = spec_utils.preprocess(X_spec)
n_frame = X_mag.shape[2]
pad_l, pad_r, roi_size = spec_utils.make_padding(n_frame, self.window_size, self.model_run.offset)
X_mag_pad = np.pad(X_mag, ((0, 0), (0, 0), (pad_l, pad_r)), mode='constant')
X_mag_pad /= X_mag_pad.max()
mask = _execute(X_mag_pad, roi_size)
if self.is_tta:
pad_l += roi_size // 2
pad_r += roi_size // 2
X_mag_pad = np.pad(X_mag, ((0, 0), (0, 0), (pad_l, pad_r)), mode='constant')
X_mag_pad /= X_mag_pad.max()
mask_tta = _execute(X_mag_pad, roi_size)
mask_tta = mask_tta[:, :, roi_size // 2:]
mask = (mask[:, :, :n_frame] + mask_tta[:, :, :n_frame]) * 0.5
else:
mask = mask[:, :, :n_frame]
y_spec, v_spec = postprocess(mask, X_mag, X_phase)
return y_spec, v_spec
def spec_to_wav(self, spec):
if self.high_end_process.startswith('mirroring'):
input_high_end_ = spec_utils.mirroring(self.high_end_process, spec, self.input_high_end, self.mp)
wav = spec_utils.cmb_spectrogram_to_wave(spec, self.mp, self.input_high_end_h, input_high_end_)
else:
wav = spec_utils.cmb_spectrogram_to_wave(spec, self.mp)
return wav
def process_secondary_model(secondary_model: ModelData, process_data, main_model_primary_stem_4_stem=None, is_4_stem_demucs=False, main_process_method=None, is_pre_proc_model=False):
if not is_pre_proc_model:
process_iteration = process_data['process_iteration']
process_iteration()
if secondary_model.process_method == VR_ARCH_TYPE:
seperator = SeperateVR(secondary_model, process_data, main_model_primary_stem_4_stem=main_model_primary_stem_4_stem, main_process_method=main_process_method)
if secondary_model.process_method == MDX_ARCH_TYPE:
seperator = SeperateMDX(secondary_model, process_data, main_model_primary_stem_4_stem=main_model_primary_stem_4_stem, main_process_method=main_process_method)
if secondary_model.process_method == DEMUCS_ARCH_TYPE:
seperator = SeperateDemucs(secondary_model, process_data, main_model_primary_stem_4_stem=main_model_primary_stem_4_stem, main_process_method=main_process_method)
secondary_sources = seperator.seperate()
if type(secondary_sources) is dict and not is_4_stem_demucs and not is_pre_proc_model:
return gather_sources(secondary_model.primary_model_primary_stem, STEM_PAIR_MAPPER[secondary_model.primary_model_primary_stem], secondary_sources)
else:
return secondary_sources
def gather_sources(primary_stem_name, secondary_stem_name, secondary_sources: dict):
source_primary = False
source_secondary = False
for key, value in secondary_sources.items():
if key in primary_stem_name:
source_primary = value
if key in secondary_stem_name:
source_secondary = value
return source_primary, source_secondary
def prepare_mix(mix, chunk_set, margin_set, mdx_net_cut=False, is_missing_mix=False):
audio_path = mix
samplerate = 44100
if not isinstance(mix, np.ndarray):
mix, samplerate = librosa.load(mix, mono=False, sr=44100)
else:
mix = mix.T
if not np.any(mix) and audio_path.endswith('.mp3'):
mix = rerun_mp3(audio_path)
if mix.ndim == 1:
mix = np.asfortranarray([mix,mix])
def get_segmented_mix(chunk_set=chunk_set):
segmented_mix = {}
samples = mix.shape[-1]
margin = margin_set
chunk_size = chunk_set*44100
assert not margin == 0, 'margin cannot be zero!'
if margin > chunk_size:
margin = chunk_size
if chunk_set == 0 or samples < chunk_size:
chunk_size = samples
counter = -1
for skip in range(0, samples, chunk_size):
counter+=1
s_margin = 0 if counter == 0 else margin
end = min(skip+chunk_size+margin, samples)
start = skip-s_margin
segmented_mix[skip] = mix[:,start:end].copy()
if end == samples:
break
return segmented_mix
if is_missing_mix:
return mix
else:
segmented_mix = get_segmented_mix()
raw_mix = get_segmented_mix(chunk_set=0) if mdx_net_cut else mix
return segmented_mix, raw_mix, samplerate
def rerun_mp3(audio_file, sample_rate=44100):
with audioread.audio_open(audio_file) as f:
track_length = int(f.duration)
return librosa.load(audio_file, duration=track_length, mono=False, sr=sample_rate)[0]
def save_format(audio_path, save_format, mp3_bit_set):
if not save_format == WAV:
if OPERATING_SYSTEM == 'Darwin':
FFMPEG_PATH = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'ffmpeg')
pydub.AudioSegment.converter = FFMPEG_PATH
musfile = pydub.AudioSegment.from_wav(audio_path)
if save_format == FLAC:
audio_path_flac = audio_path.replace(".wav", ".flac")
musfile.export(audio_path_flac, format="flac")
if save_format == MP3:
audio_path_mp3 = audio_path.replace(".wav", ".mp3")
musfile.export(audio_path_mp3, format="mp3", bitrate=mp3_bit_set)
try:
os.remove(audio_path)
except Exception as e:
print(e)