import streamlit as st import os # st.title('Ask Me Anything 📚') st.markdown("

Ask Me Anything 🎓

", unsafe_allow_html=True) st.markdown('') st.markdown('') st.session_state['new']=True # if st.session_state.new==True: # os.system('!pip install torch==1.10.2+cu113 torchvision==0.11.3+cu113 torchaudio===0.10.2+cu113 -f https://download.pytorch.org/whl/cu113/torch_stable.html') # os.system('!pip install transformers') # st.session_state.new=False from transformers import AutoModelForQuestionAnswering, AutoTokenizer, pipeline # creating the q/a pipeline nlp = pipeline('question-answering', model='deepset/roberta-base-squad2', tokenizer='deepset/roberta-base-squad2') text = st.text_area('Gimme Stuff To Study 📚') st.markdown('---') ques=st.text_input('Ask Me Anything From The Information You Have Given') #forming a question directory ques_dict = { 'question':ques, 'context':text } butt = st.button('Ask 🤷🏻') if butt==True: results = nlp(ques_dict) st.markdown('---') st.subheader('Here Is Your Answer') st.success(results['answer']) st.balloons()