Spaces:
Running
Running
File size: 9,641 Bytes
e117945 8a5784f e117945 8a5784f e117945 8a5784f e117945 8a5784f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 |
import os
import glob
import argparse
from code_efficiency_calculator import run_model_task
def calculate_memory_usage(dat_file_path):
with open(dat_file_path, 'r') as file:
prev_time = 0
prev_mem_mb = 0
mem_time_mb_s = 0
next(file)
for line in file:
if "__main__." in line:
continue
parts = line.split()
mem_in_mb = float(parts[1])
timestamp = float(parts[2])
if prev_time > 0:
time_interval_s = timestamp - prev_time
mem_time_mb_s += (prev_mem_mb + mem_in_mb) / 2 * time_interval_s
prev_time = timestamp
prev_mem_mb = mem_in_mb
return mem_time_mb_s
def calculate_runtime(dat_file_path):
with open(dat_file_path, 'r') as file:
start_time = float("inf")
end_time = float("-inf")
next(file)
for line in file:
if "__main__." in line:
continue
parts = line.split()
timestamp = float(parts[2])
start_time = min(start_time, timestamp)
end_time = max(end_time, timestamp)
return max(end_time - start_time,0)
def report_max_memory_usage(dat_file_path):
max_memory_usage = 0
with open(dat_file_path, 'r') as file:
next(file)
for line in file:
if "__main__." in line:
continue
parts = line.split()
mem_in_mb = float(parts[1])
max_memory_usage = max(max_memory_usage, mem_in_mb)
return max_memory_usage
def report_results(task, model, file):
run_model_task(task, model, file)
dat_directory = f"./results/{task}_{model}"
canonical_solution_directory = f"./results/{task}_canonical_solution"
canonical_solution_memory_usage = {}
canonical_solution_execution_time = {}
canonical_solution_max_memory_usage = {}
for dat_file in glob.glob(os.path.join(canonical_solution_directory, "*.dat")):
try:
problem_idx = os.path.basename(dat_file).split('.')[0]
canonical_solution_memory_usage[int(problem_idx)] = calculate_memory_usage(dat_file)
canonical_solution_execution_time[int(problem_idx)] = calculate_runtime(dat_file)
canonical_solution_max_memory_usage[int(problem_idx)] = report_max_memory_usage(dat_file)
except:
pass
global_result = {}
completion_memory_usage = {}
execution_time = {}
max_memory_usage = {}
task_idx = {}
for dat_file in glob.glob(os.path.join(dat_directory, "*.dat")):
try:
problem_idx = os.path.basename(dat_file).split('.')[0]
execution_time_result = calculate_runtime(dat_file)
completion_memory_usage[int(problem_idx)] = calculate_memory_usage(dat_file)
execution_time[int(problem_idx)] = calculate_runtime(dat_file)
max_memory_usage[int(problem_idx)] = report_max_memory_usage(dat_file)
task_idx[int(problem_idx)] = dat_file
except Exception as e:
print(dat_file)
global_result[model] = {"completion_memory_usage":completion_memory_usage,"execution_time":execution_time,"max_memory_usage":max_memory_usage,"task_idx":task_idx}
save_results = []
max_net_lists = {}
max_nmu_lists = {}
max_ntmu_lists = {}
for model in global_result.keys():
completion_memory_usage = global_result[model]["completion_memory_usage"]
execution_time = global_result[model]["execution_time"]
max_memory_usage = global_result[model]["max_memory_usage"]
# report execution time
total_execution_time = 0
# report normalized execution time
normalized_execution_time = 0
# report max memory usage
total_max_memory_usage = 0
# report normalized max memory usage
normalized_max_memory_usage = 0
# report memory usage
total_memory_usage = 0
total_canonical_solution_max_memory_usage = 0
total_canonical_solution_execution_time = 0
total_canonical_solution_memory_usage = 0
# report normalized memory usage
normalized_memory_usage = 0
total_codes = 0
normalized_execution_time_list = []
normalized_max_memory_usage_list = []
normalized_memory_usage_list = []
total_fast = 0
total_95 = 0
total_97=0
total_99=0
total_100=0
total_101=0
total_1000=0
total_500=0
category_tmp = {}
total_10000=0
max_net = float("-inf")
max_nmu = float("-inf")
max_tmu = float("-inf")
total_500_net = 0
total_500_nmu = 0
total_500_tmu = 0
# print(len(completion_memory_usage))
for idx in completion_memory_usage.keys():
if idx not in canonical_solution_memory_usage.keys():
continue
total_memory_usage += completion_memory_usage[idx]
total_execution_time += execution_time[idx]
total_max_memory_usage += max_memory_usage[idx]
total_canonical_solution_max_memory_usage+=canonical_solution_max_memory_usage[idx]
total_canonical_solution_memory_usage+=canonical_solution_memory_usage[idx]
total_canonical_solution_execution_time+=canonical_solution_execution_time[idx]
if execution_time[idx]/canonical_solution_execution_time[idx]>5:
total_500_net+=1
if max_net<execution_time[idx]/canonical_solution_execution_time[idx]:
max_net = execution_time[idx]/canonical_solution_execution_time[idx]
normalized_execution_time += execution_time[idx]/canonical_solution_execution_time[idx]
normalized_execution_time_list.append(execution_time[idx]/canonical_solution_execution_time[idx])
if max_memory_usage[idx]/canonical_solution_max_memory_usage[idx]>5:
total_500_nmu+=1
if max_nmu<max_memory_usage[idx]/canonical_solution_max_memory_usage[idx]:
max_nmu = max_memory_usage[idx]/canonical_solution_max_memory_usage[idx]
normalized_max_memory_usage += max_memory_usage[idx]/canonical_solution_max_memory_usage[idx]
normalized_max_memory_usage_list.append(max_memory_usage[idx]/canonical_solution_max_memory_usage[idx])
if completion_memory_usage[idx]/canonical_solution_memory_usage[idx]>5:
total_500_tmu+=1
net = execution_time[idx] / canonical_solution_execution_time[idx]
nmu = completion_memory_usage[idx] / canonical_solution_memory_usage[idx]
ntmu = max_memory_usage[idx] / canonical_solution_max_memory_usage[idx]
normalized_memory_usage += completion_memory_usage[idx]/canonical_solution_memory_usage[idx]
normalized_memory_usage_list.append(completion_memory_usage[idx]/canonical_solution_memory_usage[idx])
if len(max_net_lists) < 10 or net > min(max_net_lists.keys()):
if len(max_net_lists) >= 10:
min_key = min(max_net_lists.keys())
del max_net_lists[min_key]
max_net_lists[net] = (model, idx)
if len(max_nmu_lists) < 10 or nmu > min(max_nmu_lists.keys()):
if len(max_nmu_lists) >= 10:
min_key = min(max_nmu_lists.keys())
del max_nmu_lists[min_key]
max_nmu_lists[nmu] = (model, idx)
if len(max_ntmu_lists) < 10 or ntmu > min(max_ntmu_lists.keys()):
if len(max_ntmu_lists) >= 10:
min_key = min(max_ntmu_lists.keys())
del max_ntmu_lists[min_key]
max_ntmu_lists[ntmu] = (model, idx)
max_tmu = max(max_tmu,completion_memory_usage[idx]/canonical_solution_memory_usage[idx])
total_codes+=1
if len(normalized_execution_time_list)==0:
print(model)
continue
normalized_execution_time = normalized_execution_time/len(normalized_execution_time_list)
normalized_max_memory_usage = normalized_max_memory_usage/len(normalized_execution_time_list)
normalized_memory_usage = normalized_memory_usage/len(normalized_execution_time_list)
total_execution_time = total_execution_time/len(normalized_execution_time_list)
total_memory_usage = total_memory_usage/len(normalized_execution_time_list)
total_max_memory_usage = total_max_memory_usage/len(normalized_execution_time_list)
pass1 = len(completion_memory_usage)/1000*100
total_500_net = total_500_net/len(normalized_execution_time_list)*100
total_500_nmu = total_500_nmu/len(normalized_execution_time_list)*100
total_500_tmu = total_500_tmu/len(normalized_execution_time_list)*100
return f"{model}&{total_execution_time:.2f}&{normalized_execution_time:.2f}&{max_net:.2f}&{total_500_net:.1f}&{total_max_memory_usage:.2f}&{normalized_max_memory_usage:.2f}&{max_nmu:.2f}&{total_500_nmu:.1f}&{total_memory_usage:.2f}&{normalized_memory_usage:.2f}&{max_tmu:.2f}&{total_500_tmu:.1f}&{pass1:.1f}\\\\"
if __name__ == "__main__":
parse = argparse.ArgumentParser()
parse.add_argument("--task", type=str, default="EffiBench")
parse.add_argument("--model", type=str, default="gpt-4")
parse.add_argument("--file", type=str, default="")
args = parse.parse_args()
if not args.file:
args.file = f"./{args.task}_{args.model}.json"
report_results(args.task,args.model, args.file)
|