cleaner app
Browse files
app.py
CHANGED
@@ -1,7 +1,6 @@
|
|
1 |
import gradio as gr
|
2 |
-
from transformers import pipeline
|
3 |
from haystack.document_stores import FAISSDocumentStore
|
4 |
-
from haystack.nodes import EmbeddingRetriever
|
5 |
import numpy as np
|
6 |
import openai
|
7 |
import os
|
@@ -15,12 +14,21 @@ from utils import (
|
|
15 |
get_random_string,
|
16 |
)
|
17 |
|
18 |
-
|
19 |
-
classifier = pipeline("zero-shot-classification", model="facebook/bart-large-mnli")
|
20 |
system_template = {"role": os.environ["role"], "content": os.environ["content"]}
|
21 |
|
22 |
|
23 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
"""return (answer:str, history:list[dict], sources:str)
|
25 |
|
26 |
Args:
|
@@ -31,57 +39,32 @@ def gen_conv(query: str, report_type, history=[system_template], ipcc=True):
|
|
31 |
Returns:
|
32 |
_type_: _description_
|
33 |
"""
|
34 |
-
if report_type == "IPCC only":
|
35 |
-
document_store = FAISSDocumentStore.load(
|
36 |
-
index_path="./documents/climate_gpt_only_giec.faiss",
|
37 |
-
config_path="./documents/climate_gpt_only_giec.json",
|
38 |
-
)
|
39 |
-
else:
|
40 |
-
document_store = FAISSDocumentStore.load(
|
41 |
-
index_path="./documents/climate_gpt.faiss",
|
42 |
-
config_path="./documents/climate_gpt.json",
|
43 |
-
)
|
44 |
|
45 |
dense = EmbeddingRetriever(
|
46 |
-
document_store=document_store,
|
47 |
embedding_model="sentence-transformers/multi-qa-mpnet-base-dot-v1",
|
48 |
model_format="sentence_transformers",
|
49 |
)
|
50 |
|
51 |
-
|
52 |
-
|
53 |
-
sources = ""
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
[os.environ["sources"]]
|
62 |
-
+ [
|
63 |
-
f"{d.meta['file_name']} Page {d.meta['page_number']}\n{d.content}"
|
64 |
-
for d in docs
|
65 |
-
]
|
66 |
-
)
|
67 |
-
messages.append({"role": "system", "content": sources})
|
68 |
-
|
69 |
-
answer = openai.ChatCompletion.create(
|
70 |
-
model="gpt-3.5-turbo",
|
71 |
-
messages=messages,
|
72 |
-
temperature=0.2,
|
73 |
-
)["choices"][0]["message"]["content"]
|
74 |
-
|
75 |
-
if retrieve:
|
76 |
-
messages.pop()
|
77 |
-
sources = "\n\n".join(
|
78 |
-
f"{d.meta['file_name']} Page {d.meta['page_number']}:\n{d.content}"
|
79 |
-
for d in docs
|
80 |
-
)
|
81 |
else:
|
|
|
82 |
sources = "No environmental report was used to provide this answer."
|
83 |
|
84 |
-
|
|
|
|
|
|
|
|
|
85 |
gradio_format = make_pairs([a["content"] for a in messages[1:]])
|
86 |
|
87 |
return gradio_format, messages, sources
|
@@ -123,20 +106,18 @@ with gr.Blocks(title="π ClimateGPT Ekimetrics", css=css_code) as demo:
|
|
123 |
|
124 |
with gr.Column(scale=1, variant="panel"):
|
125 |
gr.Markdown("### Sources")
|
126 |
-
sources_textbox = gr.Textbox(
|
127 |
-
interactive=False, show_label=False, max_lines=50
|
128 |
-
)
|
129 |
|
130 |
ask.submit(
|
131 |
fn=gen_conv,
|
132 |
inputs=[
|
133 |
ask,
|
|
|
134 |
gr.inputs.Dropdown(
|
135 |
["IPCC only", "All available"],
|
136 |
default="All available",
|
137 |
label="Select reports",
|
138 |
),
|
139 |
-
state,
|
140 |
],
|
141 |
outputs=[chatbot, state, sources_textbox],
|
142 |
)
|
@@ -153,12 +134,8 @@ with gr.Blocks(title="π ClimateGPT Ekimetrics", css=css_code) as demo:
|
|
153 |
lines=1,
|
154 |
type="password",
|
155 |
)
|
156 |
-
openai_api_key_textbox.change(
|
157 |
-
|
158 |
-
)
|
159 |
-
openai_api_key_textbox.submit(
|
160 |
-
set_openai_api_key, inputs=[openai_api_key_textbox]
|
161 |
-
)
|
162 |
|
163 |
with gr.Tab("Information"):
|
164 |
gr.Markdown(
|
|
|
1 |
import gradio as gr
|
|
|
2 |
from haystack.document_stores import FAISSDocumentStore
|
3 |
+
from haystack.nodes import EmbeddingRetriever
|
4 |
import numpy as np
|
5 |
import openai
|
6 |
import os
|
|
|
14 |
get_random_string,
|
15 |
)
|
16 |
|
|
|
|
|
17 |
system_template = {"role": os.environ["role"], "content": os.environ["content"]}
|
18 |
|
19 |
|
20 |
+
only_ipcc_document_store = FAISSDocumentStore.load(
|
21 |
+
index_path="./documents/climate_gpt_only_giec.faiss",
|
22 |
+
config_path="./documents/climate_gpt_only_giec.json",
|
23 |
+
)
|
24 |
+
|
25 |
+
document_store = FAISSDocumentStore.load(
|
26 |
+
index_path="./documents/climate_gpt.faiss",
|
27 |
+
config_path="./documents/climate_gpt.json",
|
28 |
+
)
|
29 |
+
|
30 |
+
|
31 |
+
def gen_conv(query: str, history=[system_template], report_type="All available", threshold=0.56):
|
32 |
"""return (answer:str, history:list[dict], sources:str)
|
33 |
|
34 |
Args:
|
|
|
39 |
Returns:
|
40 |
_type_: _description_
|
41 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
|
43 |
dense = EmbeddingRetriever(
|
44 |
+
document_store=document_store if report_type == "All available" else only_ipcc_document_store,
|
45 |
embedding_model="sentence-transformers/multi-qa-mpnet-base-dot-v1",
|
46 |
model_format="sentence_transformers",
|
47 |
)
|
48 |
|
49 |
+
messages = history + [{"role": "user", "content": query}]
|
50 |
+
docs = dense.retrieve(query=query, top_k=10)
|
51 |
+
sources = "\n\n".join(
|
52 |
+
f"doc {i}: {d.meta['file_name']} page {d.meta['page_number']}\n{d.content}"
|
53 |
+
for i, d in enumerate(docs, 1)
|
54 |
+
if d.score > threshold
|
55 |
+
)
|
56 |
+
|
57 |
+
if sources:
|
58 |
+
messages.append({"role": "system", "content": f"{os.environ['sources']}\n\n{sources}"})
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
else:
|
60 |
+
messages.append({"role": "system", "content": "no relevant document available."})
|
61 |
sources = "No environmental report was used to provide this answer."
|
62 |
|
63 |
+
answer = openai.ChatCompletion.create(model="gpt-3.5-turbo", messages=messages, temperature=0.2,)["choices"][0][
|
64 |
+
"message"
|
65 |
+
]["content"]
|
66 |
+
|
67 |
+
messages[-1] = {"role": "assistant", "content": answer}
|
68 |
gradio_format = make_pairs([a["content"] for a in messages[1:]])
|
69 |
|
70 |
return gradio_format, messages, sources
|
|
|
106 |
|
107 |
with gr.Column(scale=1, variant="panel"):
|
108 |
gr.Markdown("### Sources")
|
109 |
+
sources_textbox = gr.Textbox(interactive=False, show_label=False, max_lines=50)
|
|
|
|
|
110 |
|
111 |
ask.submit(
|
112 |
fn=gen_conv,
|
113 |
inputs=[
|
114 |
ask,
|
115 |
+
state,
|
116 |
gr.inputs.Dropdown(
|
117 |
["IPCC only", "All available"],
|
118 |
default="All available",
|
119 |
label="Select reports",
|
120 |
),
|
|
|
121 |
],
|
122 |
outputs=[chatbot, state, sources_textbox],
|
123 |
)
|
|
|
134 |
lines=1,
|
135 |
type="password",
|
136 |
)
|
137 |
+
openai_api_key_textbox.change(set_openai_api_key, inputs=[openai_api_key_textbox])
|
138 |
+
openai_api_key_textbox.submit(set_openai_api_key, inputs=[openai_api_key_textbox])
|
|
|
|
|
|
|
|
|
139 |
|
140 |
with gr.Tab("Information"):
|
141 |
gr.Markdown(
|