Updated CSS
Browse files
app.py
CHANGED
@@ -33,8 +33,9 @@ except:
|
|
33 |
pass
|
34 |
|
35 |
# Set up Gradio Theme
|
36 |
-
theme = gr.themes.
|
37 |
-
primary_hue="
|
|
|
38 |
font=[gr.themes.GoogleFont("Poppins"), "ui-sans-serif", "system-ui", "sans-serif"],
|
39 |
)
|
40 |
|
@@ -63,10 +64,31 @@ user_id = create_user_id(10)
|
|
63 |
# ClimateQ&A core functions
|
64 |
#---------------------------------------------------------------------------
|
65 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
66 |
# Create embeddings function and LLM
|
67 |
embeddings_function = HuggingFaceEmbeddings(model_name = "sentence-transformers/multi-qa-mpnet-base-dot-v1")
|
68 |
-
llm = get_llm(max_tokens = 1024,temperature = 0.0,verbose = True,streaming =
|
69 |
-
callbacks=[
|
70 |
)
|
71 |
|
72 |
# Create vectorstore and retriever
|
@@ -80,56 +102,49 @@ chain = load_climateqa_chain(retriever,llm)
|
|
80 |
# From https://github.com/gradio-app/gradio/issues/5345
|
81 |
#---------------------------------------------------------------------------
|
82 |
|
83 |
-
# from langchain.callbacks.base import BaseCallbackHandler
|
84 |
-
# from queue import Queue, Empty
|
85 |
-
# from threading import Thread
|
86 |
-
# from collections.abc import Generator
|
87 |
|
88 |
-
# class QueueCallback(BaseCallbackHandler):
|
89 |
-
# """Callback handler for streaming LLM responses to a queue."""
|
90 |
|
91 |
-
#
|
92 |
-
|
|
|
|
|
|
|
93 |
|
94 |
-
#
|
95 |
-
|
|
|
|
|
96 |
|
97 |
-
#
|
98 |
-
|
99 |
-
|
100 |
|
101 |
-
|
102 |
-
# # Create a Queue
|
103 |
-
# q = Queue()
|
104 |
-
# job_done = object()
|
105 |
|
106 |
-
#
|
107 |
-
|
108 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
109 |
|
110 |
-
# chain = load_climateqa_chain(retriever,llm)
|
111 |
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
116 |
|
117 |
-
# # Create a thread and start the function
|
118 |
-
# t = Thread(target=task)
|
119 |
-
# t.start()
|
120 |
|
121 |
-
# content = ""
|
122 |
-
|
123 |
-
# # Get each new token from the queue and yield for our generator
|
124 |
-
# while True:
|
125 |
-
# try:
|
126 |
-
# next_token = q.get(True, timeout=1)
|
127 |
-
# if next_token is job_done:
|
128 |
-
# break
|
129 |
-
# content += next_token
|
130 |
-
# yield next_token, content
|
131 |
-
# except Empty:
|
132 |
-
# continue
|
133 |
|
134 |
|
135 |
def answer_user(message,history):
|
@@ -154,6 +169,7 @@ def answer_bot(message,history,audience):
|
|
154 |
# history_langchain_format.append(HumanMessage(content=message)
|
155 |
# for next_token, content in stream(message):
|
156 |
# yield(content)
|
|
|
157 |
output = chain({"query":message,"audience":audience_prompt})
|
158 |
question = output["question"]
|
159 |
sources = output["source_documents"]
|
@@ -347,7 +363,7 @@ with gr.Blocks(title="🌍 Climate Q&A", css="style.css", theme=theme) as demo:
|
|
347 |
with gr.Row(elem_id="chatbot-row"):
|
348 |
with gr.Column(scale=2):
|
349 |
# state = gr.State([system_template])
|
350 |
-
bot = gr.Chatbot(
|
351 |
textbox=gr.Textbox(placeholder="Ask me a question about climate change or biodiversity in any language!",show_label=False)
|
352 |
submit_button = gr.Button("Submit")
|
353 |
|
|
|
33 |
pass
|
34 |
|
35 |
# Set up Gradio Theme
|
36 |
+
theme = gr.themes.Base(
|
37 |
+
primary_hue="blue",
|
38 |
+
secondary_hue="red",
|
39 |
font=[gr.themes.GoogleFont("Poppins"), "ui-sans-serif", "system-ui", "sans-serif"],
|
40 |
)
|
41 |
|
|
|
64 |
# ClimateQ&A core functions
|
65 |
#---------------------------------------------------------------------------
|
66 |
|
67 |
+
from langchain.callbacks.base import BaseCallbackHandler
|
68 |
+
from queue import Queue, Empty
|
69 |
+
from threading import Thread
|
70 |
+
from collections.abc import Generator
|
71 |
+
|
72 |
+
# Create a Queue
|
73 |
+
Q = Queue()
|
74 |
+
|
75 |
+
class QueueCallback(BaseCallbackHandler):
|
76 |
+
"""Callback handler for streaming LLM responses to a queue."""
|
77 |
+
|
78 |
+
def __init__(self, q):
|
79 |
+
self.q = q
|
80 |
+
|
81 |
+
def on_llm_new_token(self, token: str, **kwargs: any) -> None:
|
82 |
+
self.q.put(token)
|
83 |
+
|
84 |
+
def on_llm_end(self, *args, **kwargs: any) -> None:
|
85 |
+
return self.q.empty()
|
86 |
+
|
87 |
+
|
88 |
# Create embeddings function and LLM
|
89 |
embeddings_function = HuggingFaceEmbeddings(model_name = "sentence-transformers/multi-qa-mpnet-base-dot-v1")
|
90 |
+
llm = get_llm(max_tokens = 1024,temperature = 0.0,verbose = True,streaming = True,
|
91 |
+
callbacks=[QueueCallback(Q)],
|
92 |
)
|
93 |
|
94 |
# Create vectorstore and retriever
|
|
|
102 |
# From https://github.com/gradio-app/gradio/issues/5345
|
103 |
#---------------------------------------------------------------------------
|
104 |
|
|
|
|
|
|
|
|
|
105 |
|
|
|
|
|
106 |
|
107 |
+
# Create a function that will return our generator
|
108 |
+
def stream(chain, input_text) -> Generator:
|
109 |
+
with Q.mutex:
|
110 |
+
Q.queue.clear()
|
111 |
+
job_done = object()
|
112 |
|
113 |
+
# Create a function to call - this will run in a thread
|
114 |
+
def task():
|
115 |
+
answer = chain({"query":input_text,"audience":"expert climate scientist"})
|
116 |
+
Q.put(job_done)
|
117 |
|
118 |
+
# Create a thread and start the function
|
119 |
+
t = Thread(target=task)
|
120 |
+
t.start()
|
121 |
|
122 |
+
content = ""
|
|
|
|
|
|
|
123 |
|
124 |
+
# Get each new token from the queue and yield for our generator
|
125 |
+
while True:
|
126 |
+
try:
|
127 |
+
next_token = Q.get(True, timeout=1)
|
128 |
+
if next_token is job_done:
|
129 |
+
break
|
130 |
+
content += next_token
|
131 |
+
yield next_token, content
|
132 |
+
except Empty:
|
133 |
+
continue
|
134 |
|
|
|
135 |
|
136 |
+
def stream_sentences(chain, input_text) -> Generator:
|
137 |
+
"""wrapper to stream function"""
|
138 |
+
sentence = ""
|
139 |
+
for next_token, content in stream(chain, input_text):
|
140 |
+
sentence += next_token
|
141 |
+
if "\n\n" in next_token:
|
142 |
+
yield sentence
|
143 |
+
sentence = ""
|
144 |
+
if sentence:
|
145 |
+
yield sentence
|
146 |
|
|
|
|
|
|
|
147 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
148 |
|
149 |
|
150 |
def answer_user(message,history):
|
|
|
169 |
# history_langchain_format.append(HumanMessage(content=message)
|
170 |
# for next_token, content in stream(message):
|
171 |
# yield(content)
|
172 |
+
|
173 |
output = chain({"query":message,"audience":audience_prompt})
|
174 |
question = output["question"]
|
175 |
sources = output["source_documents"]
|
|
|
363 |
with gr.Row(elem_id="chatbot-row"):
|
364 |
with gr.Column(scale=2):
|
365 |
# state = gr.State([system_template])
|
366 |
+
bot = gr.Chatbot(show_copy_button=True,show_label = False,elem_id="chatbot",layout = "panel",avatar_images = (None,"assets/logo4.png"))
|
367 |
textbox=gr.Textbox(placeholder="Ask me a question about climate change or biodiversity in any language!",show_label=False)
|
368 |
submit_button = gr.Button("Submit")
|
369 |
|
style.css
CHANGED
@@ -108,17 +108,17 @@ a {
|
|
108 |
|
109 |
|
110 |
.message.user{
|
111 |
-
background-color:#7494b0 !important;
|
112 |
border:none;
|
113 |
-
color:white!important;
|
114 |
}
|
115 |
|
116 |
.message.bot{
|
117 |
-
background-color:#f2f2f7 !important;
|
118 |
border:none;
|
119 |
}
|
120 |
|
121 |
-
.gallery-item > div:hover{
|
122 |
background-color:#7494b0 !important;
|
123 |
color:white!important;
|
124 |
}
|
@@ -134,18 +134,18 @@ a {
|
|
134 |
|
135 |
.label{
|
136 |
color:#577b9b!important;
|
137 |
-
}
|
138 |
|
139 |
-
.paginate{
|
140 |
color:#577b9b!important;
|
141 |
-
}
|
142 |
|
143 |
|
144 |
|
145 |
-
span[data-testid="block-info"]{
|
146 |
background:none !important;
|
147 |
color:#577b9b;
|
148 |
-
}
|
149 |
|
150 |
/* Pseudo-element for the circularly cropped picture */
|
151 |
/* .message.bot::before {
|
|
|
108 |
|
109 |
|
110 |
.message.user{
|
111 |
+
/* background-color:#7494b0 !important; */
|
112 |
border:none;
|
113 |
+
/* color:white!important; */
|
114 |
}
|
115 |
|
116 |
.message.bot{
|
117 |
+
/* background-color:#f2f2f7 !important; */
|
118 |
border:none;
|
119 |
}
|
120 |
|
121 |
+
/* .gallery-item > div:hover{
|
122 |
background-color:#7494b0 !important;
|
123 |
color:white!important;
|
124 |
}
|
|
|
134 |
|
135 |
.label{
|
136 |
color:#577b9b!important;
|
137 |
+
} */
|
138 |
|
139 |
+
/* .paginate{
|
140 |
color:#577b9b!important;
|
141 |
+
} */
|
142 |
|
143 |
|
144 |
|
145 |
+
/* span[data-testid="block-info"]{
|
146 |
background:none !important;
|
147 |
color:#577b9b;
|
148 |
+
} */
|
149 |
|
150 |
/* Pseudo-element for the circularly cropped picture */
|
151 |
/* .message.bot::before {
|