Spaces:
Runtime error
Runtime error
Ahsen Khaliq
commited on
Commit
•
3ab7435
1
Parent(s):
e39fd98
Update app.py
Browse files
app.py
CHANGED
@@ -24,6 +24,8 @@ sys.path.append('./CLIP')
|
|
24 |
sys.path.append('./guided-diffusion')
|
25 |
import clip
|
26 |
from guided_diffusion.script_util import create_model_and_diffusion, model_and_diffusion_defaults
|
|
|
|
|
27 |
# Model settings
|
28 |
model_config = model_and_diffusion_defaults()
|
29 |
model_config.update({
|
@@ -60,6 +62,7 @@ def spherical_dist_loss(x, y):
|
|
60 |
return (x - y).norm(dim=-1).div(2).arcsin().pow(2).mul(2)
|
61 |
|
62 |
def inference(text):
|
|
|
63 |
prompt = text
|
64 |
batch_size = 1
|
65 |
clip_guidance_scale = 2750
|
@@ -103,19 +106,24 @@ def inference(text):
|
|
103 |
|
104 |
for i, sample in enumerate(samples):
|
105 |
cur_t -= 1
|
106 |
-
if i %
|
107 |
print()
|
108 |
for j, image in enumerate(sample['pred_xstart']):
|
109 |
-
filename = f'progress_{j:05}.png'
|
110 |
-
TF.to_pil_image(image.add(1).div(2).clamp(0, 1))
|
|
|
111 |
tqdm.write(f'Step {i}, output {j}:')
|
112 |
#display.display(display.Image(filename))
|
113 |
-
|
|
|
|
|
|
|
|
|
114 |
|
115 |
title = "CLIP Guided Diffusion"
|
116 |
description = "Gradio demo for CLIP Guided Diffusion. To use it, simply add your text, or click one of the examples to load them. Read more at the links below."
|
117 |
article = "<p style='text-align: center'>By Katherine Crowson (https://github.com/crowsonkb, https://twitter.com/RiversHaveWings). It uses OpenAI's 256x256 unconditional ImageNet diffusion model (https://github.com/openai/guided-diffusion) together with CLIP (https://github.com/openai/CLIP) to connect text prompts with images. | <a href='https://colab.research.google.com/drive/1ED6_MYVXTApBHzQObUPaaMolgf9hZOOF' target='_blank'>Colab</a></p>"
|
118 |
|
119 |
-
iface = gr.Interface(inference, inputs="text", outputs="image", title=title, description=description, article=article, examples=[["coral reef city by artistation artists"]],
|
120 |
enable_queue=True)
|
121 |
iface.launch()
|
|
|
24 |
sys.path.append('./guided-diffusion')
|
25 |
import clip
|
26 |
from guided_diffusion.script_util import create_model_and_diffusion, model_and_diffusion_defaults
|
27 |
+
import numpy as np
|
28 |
+
import imageio
|
29 |
# Model settings
|
30 |
model_config = model_and_diffusion_defaults()
|
31 |
model_config.update({
|
|
|
62 |
return (x - y).norm(dim=-1).div(2).arcsin().pow(2).mul(2)
|
63 |
|
64 |
def inference(text):
|
65 |
+
all_frames = []
|
66 |
prompt = text
|
67 |
batch_size = 1
|
68 |
clip_guidance_scale = 2750
|
|
|
106 |
|
107 |
for i, sample in enumerate(samples):
|
108 |
cur_t -= 1
|
109 |
+
if i % 1 == 0 or cur_t == -1:
|
110 |
print()
|
111 |
for j, image in enumerate(sample['pred_xstart']):
|
112 |
+
#filename = f'progress_{j:05}.png'
|
113 |
+
img = TF.to_pil_image(image.add(1).div(2).clamp(0, 1))
|
114 |
+
all_frames.append(img)
|
115 |
tqdm.write(f'Step {i}, output {j}:')
|
116 |
#display.display(display.Image(filename))
|
117 |
+
writer = imageio.get_writer('video.mp4', fps=20)
|
118 |
+
for im in all_frames:
|
119 |
+
writer.append_data(np.array(im))
|
120 |
+
writer.close()
|
121 |
+
return img, 'video.mp4'
|
122 |
|
123 |
title = "CLIP Guided Diffusion"
|
124 |
description = "Gradio demo for CLIP Guided Diffusion. To use it, simply add your text, or click one of the examples to load them. Read more at the links below."
|
125 |
article = "<p style='text-align: center'>By Katherine Crowson (https://github.com/crowsonkb, https://twitter.com/RiversHaveWings). It uses OpenAI's 256x256 unconditional ImageNet diffusion model (https://github.com/openai/guided-diffusion) together with CLIP (https://github.com/openai/CLIP) to connect text prompts with images. | <a href='https://colab.research.google.com/drive/1ED6_MYVXTApBHzQObUPaaMolgf9hZOOF' target='_blank'>Colab</a></p>"
|
126 |
|
127 |
+
iface = gr.Interface(inference, inputs="text", outputs=["image","video"], title=title, description=description, article=article, examples=[["coral reef city by artistation artists"]],
|
128 |
enable_queue=True)
|
129 |
iface.launch()
|