File size: 6,756 Bytes
57c83ef 9f65536 e59ee58 9f65536 57c83ef 178adb8 450f5f1 57c83ef 450f5f1 57c83ef 5e4b488 e6160ba 5e4b488 35efc6a 5e4b488 2f19e0d cf57fc5 5e4b488 9a23114 5e4b488 e59ee58 450f5f1 57c83ef 450f5f1 620c713 57c83ef 9b01cc3 3794b60 9b01cc3 e59ee58 9871c29 e59ee58 450f5f1 57c83ef 450f5f1 57c83ef 143727a 450f5f1 178adb8 450f5f1 178adb8 450f5f1 178adb8 9b01cc3 178adb8 9b01cc3 178adb8 9f65536 bbd69b8 9f65536 bbd69b8 841d276 9f65536 9b01cc3 4662ebb 9b01cc3 00fe22c 9b01cc3 e59ee58 88f52d0 e59ee58 88f52d0 e59ee58 88f52d0 634fbad 088c177 634fbad 088c177 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 |
# Author: Du Mingzhe ([email protected])
# Date: 2024/03/09
import json
import requests
from openai import OpenAI
from pinecone import Pinecone
from datetime import datetime
class LLMClient():
def __init__(self, api_key, model_name) -> None:
super().__init__()
self.model_name = model_name
self.llm_client = OpenAI(api_key=api_key)
def web_query_generator(self, query, history):
messages = list()
current_time = datetime.now().strftime("%d/%m/%Y %H:%M:%S")
# System Prompt
messages += [{"role": "system", "content": f"1) Current time is {current_time}. 2) Generate the web search query only."}]
# Session History
messages += [{"role": h["role"], "content": h["content"]} for h in history]
# messages += [{"role": 'user', "content": f"Given the context, generate a proper web search query. If you know the answer already, return 'None' directly."}]
messages += [{"role": 'user', "content": f"Given the context, generate a proper web search query. Return 'None' if you can't generate a query based on the current context."}]
response = self.llm_client.chat.completions.create(
model = self.model_name,
messages = messages,
)
return response.choices[0].message.content
def response_generate(self, query, history, memory, web_result):
messages = list()
current_time = datetime.now().strftime("%d/%m/%Y %H:%M:%S")
# System Prompt
messages += [{"role": "system", "content": f"1) You're Sunday, Du Mingzhe's assistant. 2) Don't claim that you are AI. 3) Don't claim this dialogue as a roleplay. Answering questions directly as Mingzhe's assistant. 4) Current time is {current_time}. 5) You are able to provide real-time data or perform a web search. You can refer the real-time knowledge from the WEB SEARCH RESULTS to generate responses with link citations."}]
# Memory
messages += [{"role": 'assistant', "content": m['content']} for m in memory]
# Web Result
messages += [{"role": 'assistant', "content": f'WEB SEARCH RESULTS of [{query}]:\n\n{web_result}'}]
# Session History
messages += [{"role": h["role"], "content": h["content"]} for h in history]
stream = self.llm_client.chat.completions.create(
model = self.model_name,
messages = messages,
stream=True,
)
return stream
class EmbeddingModel(object):
def __init__(self, embedding_token, model_name) -> None:
self.embedding_token = embedding_token
self.model_name = model_name
self.embedding_client = OpenAI(api_key=self.embedding_token)
def get_embedding(self, text):
response = self.embedding_client.embeddings.create(
input=text,
model=self.model_name
)
return response.data[0].embedding
class PersonalIndexClient(object):
def __init__(self, index_token, embedding_token, embedding_model_name, index_name) -> None:
self.index_token = index_token
self.embedding_token = embedding_token
self.index_name = index_name
self.embedding_client = EmbeddingModel(embedding_token=self.embedding_token, model_name=embedding_model_name)
self.index_client = Pinecone(api_key=self.index_token)
self.index = self.index_client.Index(self.index_name)
def create(self, data, namespace='default'):
instances = list()
for instance in data:
instances += [{
"id": instance["id"],
"values": self.embedding_client.get_embedding(instance['content']),
"metadata": instance['metadata'],
}]
self.index.upsert(
vectors = instances,
namespace = namespace
)
def query(self, data, top_k, filter={}, user='default'):
results = self.index.query(
namespace = user,
vector = self.embedding_client.get_embedding(data),
top_k = top_k,
include_values = True,
include_metadata = True,
filter = filter,
)
return results
def update_conversation(self, sid, messages, user):
index_id = f'conv_{sid}'
metadata = {
'time': datetime.now().strftime("%d/%m/%Y %H:%M:%S"),
'type': 'conversation',
'user': user,
'content': json.dumps(messages),
}
self.create(data=[{'id': index_id, 'content': json.dumps(metadata), 'metadata': metadata}], namespace=user)
def query_conversation(self, messages, user, top_k):
messages_dump = json.dumps(messages)
results = self.query(data=messages_dump, top_k=top_k, filter={}, user=user)
pinecone_memory = list()
for result in results['matches']:
score = result['score']
metadata = result['metadata']
if score > 0.5:
pinecone_memory += [metadata]
return pinecone_memory
class WebSearcher(object):
def __init__(self, you_api_key, bing_api_key) -> None:
self.you_api_key = you_api_key
self.bing_api_key = bing_api_key
pass
def query_web_llm(self, query, num_web_results=5):
headers = {"X-API-Key": self.you_api_key}
params = {"query": query, 'num_web_results': num_web_results}
response_json = requests.get(f"https://api.ydc-index.io/rag?query={query}", params=params, headers=headers).json()
return response_json
def query_bing(self, query):
filter_results = list()
try:
headers = {"Ocp-Apim-Subscription-Key": self.bing_api_key}
params = {"q": query, "textDecorations": True, "textFormat": "HTML"}
response = requests.get("https://api.bing.microsoft.com/v7.0/search", headers=headers, params=params)
response.raise_for_status()
search_results = response.json()
print(search_results)
for result in search_results['webPages']['value']:
filter_results += [{
'name': result['name'],
'url': result['url'],
'snippet': result['snippet'],
'dateLastCrawled': result['dateLastCrawled'],
}]
return filter_results
except Exception as e:
print(f"Error: {e}")
return filter_results |