Spaces:
Sleeping
Sleeping
Du Mingzhe
commited on
Commit
•
859ae4c
1
Parent(s):
534fea8
Update
Browse files
app.py
CHANGED
@@ -3,6 +3,28 @@ import streamlit as st
|
|
3 |
|
4 |
st.title("GCP Resource Alloctor")
|
5 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
st.subheader("Configuration")
|
7 |
|
8 |
# GPU Type
|
@@ -119,9 +141,9 @@ ssd_disk_price = serivces_mapping['SSD'] * ssd_disk_size
|
|
119 |
duration_total_price = core_price + memory_price + gpu_price + balanced_disk_price + ssd_disk_price
|
120 |
total_price = duration_total_price * hours
|
121 |
|
122 |
-
st.divider()
|
123 |
|
124 |
st.subheader("Hourly estimate")
|
|
|
125 |
st.write(f"Core: SGD :blue[{core_price:.3f}]")
|
126 |
st.write(f"Memory: SGD :blue[{memory_price:.3f}]")
|
127 |
st.write(f"GPU: SGD :blue[{gpu_price:.3f}]")
|
|
|
3 |
|
4 |
st.title("GCP Resource Alloctor")
|
5 |
|
6 |
+
st.subheader("Readme")
|
7 |
+
|
8 |
+
st.write("Compute Engine provides NVIDIA GPUs for your VMs in passthrough mode so that your VMs have direct control over the GPUs and their associated memory.")
|
9 |
+
st.write("* To run NVIDIA H100 80GB GPUs, you must use an A3 accelerator-optimized machine type.")
|
10 |
+
st.write("* To run NVIDIA A100 GPUs, you must use the A2 accelerator-optimized machine type.")
|
11 |
+
st.write("* To run NVIDIA L4 GPUs, you must use a G2 accelerator-optimized machine type.")
|
12 |
+
st.write("* Each A3/A2/G2 machine type has a fixed GPU count, vCPU count, and memory size.")
|
13 |
+
|
14 |
+
st.markdown("""
|
15 |
+
| GPU | Memory | FP64 | FP32 | Price | Interconnect | Best used for |
|
16 |
+
| --------- | ------------------------- | --------- | ----------| --------- | ----------------------------- | ------------- |
|
17 |
+
| H100 80GB | 80 GB HBM3 @ 3.35 TBps | 34 | 67 | 12.11 | NVLink Full Mesh @ 900 GBps | Large models with massive data tables for ML Training, Inference, HPC, BERT, DLRM |
|
18 |
+
| A100 80GB | 80 GB HBM2e @ 1.9 TBps | 9.7 | 19.5 | 2.61 | NVLink Full Mesh @ 600 GBps | Large models with massive data tables for ML Training, Inference, HPC, BERT, DLRM |
|
19 |
+
| A100 40GB | 40 GB HBM2 @ 1.6 TBps | 9.7 | 19.5 | 1.67 | NVLink Full Mesh @ 600 GBps | ML Training, Inference, HPC |
|
20 |
+
| L4 | 24 GB GDDR6 @ 300 GBps | 0.5 | 30.3 | 0.28 | N/A | ML Inference, Training, Remote Visualization Workstations, Video Transcoding, HPC |
|
21 |
+
| T4 | 16 GB GDDR6 @ 320 GBps | 0.25 | 8.1 | 0.15 | N/A | ML Inference, Training, Remote Visualization Workstations, Video Transcoding |
|
22 |
+
| V100 | 16 GB HBM2 @ 900 GBps | 7.8 | 15.7 | 0.99 | NVLink Ring @ 300 GBps | ML Training, Inference, HPC |
|
23 |
+
| P4 | 8 GB GDDR5 @ 192 GBps | 0.2 | 5.5 | 0.30 | N/A | Remote Visualization Workstations, ML Inference, and Video Transcoding |
|
24 |
+
| P100 | 16 GB HBM2 @ 732 GBps | 4.7 | 9.3 | 0.58 | N/A | ML Training, Inference, HPC, Remote Visualization Workstations |
|
25 |
+
""")
|
26 |
+
|
27 |
+
|
28 |
st.subheader("Configuration")
|
29 |
|
30 |
# GPU Type
|
|
|
141 |
duration_total_price = core_price + memory_price + gpu_price + balanced_disk_price + ssd_disk_price
|
142 |
total_price = duration_total_price * hours
|
143 |
|
|
|
144 |
|
145 |
st.subheader("Hourly estimate")
|
146 |
+
|
147 |
st.write(f"Core: SGD :blue[{core_price:.3f}]")
|
148 |
st.write(f"Memory: SGD :blue[{memory_price:.3f}]")
|
149 |
st.write(f"GPU: SGD :blue[{gpu_price:.3f}]")
|