40point12 / app.py
EmileH's picture
Trying minimal version of requirements
8d0503a
raw
history blame
5.76 kB
from haystack.components.generators import OpenAIGenerator
from haystack.utils import Secret
from haystack.components.builders.prompt_builder import PromptBuilder
from haystack.components.routers import ConditionalRouter
from haystack import Pipeline
from haystack.components.writers import DocumentWriter
from haystack.components.embedders import SentenceTransformersTextEmbedder, SentenceTransformersDocumentEmbedder
from haystack.components.preprocessors import DocumentSplitter
from haystack.components.converters.txt import TextFileToDocument
from haystack.components.preprocessors import DocumentCleaner
from haystack.document_stores.in_memory import InMemoryDocumentStore
from haystack.components.retrievers import InMemoryEmbeddingRetriever
import gradio as gr
embedding_model = "dunzhang/stella_en_400M_v5"
########################
####### Indexing #######
########################
# In memory version for now
document_store = InMemoryDocumentStore(embedding_similarity_function="cosine")
converter = TextFileToDocument()
cleaner = DocumentCleaner()
splitter = DocumentSplitter(split_by="word", split_length=200, split_overlap=100)
embedder = SentenceTransformersDocumentEmbedder(model=embedding_model,
trust_remote_code=True)
writer = DocumentWriter(document_store=document_store)
indexing = Pipeline()
indexing.add_component("converter", converter)
indexing.add_component("cleaner", cleaner)
indexing.add_component("splitter", splitter)
indexing.add_component("embedder", embedder)
indexing.add_component("writer", writer)
indexing.connect("converter", "cleaner")
indexing.connect("cleaner", "splitter")
indexing.connect("splitter", "embedder")
indexing.connect("embedder", "writer")
indexing.run({"sources": ["knowledge-plain.txt"]})
##################################
####### Answering pipeline #######
##################################
no_answer_message = (
"I'm not allowed to answer this question. Please ask something related to "
"APIs access in accordance DSA’s transparency and data-sharing provisions. "
"Is there anything else I can do for you? "
)
relevance_prompt_template = """
Classify whether this user is asking for something related to social media APIs,
the Digital Services Act (DSA), or any topic related to online platforms’ compliance
with legal and data-sharing frameworks.
Relevant topics include social media API access, data transparency, compliance
with DSA provisions, and online platform regulations.
Here is their message:
{{query}}
Here are the two previous messages. ONLY refer to these if the above message refers previous ones.
{% for message in user_history[-2:] %}
* {{message["content"]}}
{% endfor %}
If the request is related to these topics, respond “YES”. If it is off-topic (e.g., unrelated to APIs, the DSA, or legal frameworks), respond “NO”."""
routes = [
{
"condition": "{{'YES' in replies[0]}}",
"output": "{{query}}",
"output_name": "query",
"output_type": str,
},
{
"condition": "{{'NO' in replies[0]}}",
"output": no_answer_message,
"output_name": "no_answer",
"output_type": str,
}
]
query_prompt_template = """Conversation history:
{{conv_history}}
Here is what the user has requested:
{{query}}
Reply to the question with a short paragraph according to the following documents:
{% for document in documents %}
* {{document.content}}
{% endfor %}
Do not mention the documents in your answer, present it as your own knowledge.
"""
prompt_builder = PromptBuilder(template=relevance_prompt_template)
llm = OpenAIGenerator(
api_key=Secret.from_env_var("OPENAI_API_KEY"),
model="gpt-4o-mini",
generation_kwargs = {"max_tokens": 8192}
)
router = ConditionalRouter(routes=routes)
embedder = SentenceTransformersTextEmbedder(model=embedding_model)
# Again: in memory for now
retriever = InMemoryEmbeddingRetriever(document_store)
prompt_builder2 = PromptBuilder(template=query_prompt_template)
llm2 = OpenAIGenerator(
api_key=Secret.from_env_var("OPENAI_API_KEY"),
model="gpt-4o-mini",
generation_kwargs = {"max_tokens": 8192}
)
answer_query = Pipeline()
answer_query.add_component("prompt_builder", prompt_builder)
answer_query.add_component("llm", llm)
answer_query.add_component("router", router)
answer_query.add_component("embedder", embedder)
answer_query.add_component("retriever", retriever)
answer_query.add_component("prompt_builder2", prompt_builder2)
answer_query.add_component("llm2", llm2)
answer_query.connect("prompt_builder", "llm")
answer_query.connect("llm", "router")
answer_query.connect("router.query", "embedder")
answer_query.connect("embedder", "retriever")
answer_query.connect("retriever", "prompt_builder2")
answer_query.connect("prompt_builder2", "llm2")
answer_query.warm_up()
##########################
####### Gradio app #######
##########################
def chat(message, history):
"""
Chat function for Gradio. Uses the pipeline to produce next answer.
"""
conv_history = "\n\n".join([f"{message['role']}: {message['content']}" for message in history[-2:]])
user_history = [message for message in history if message["role"] == "user"]
results = answer_query.run({"user_history": user_history, "query": message,
"conv_history": conv_history})
if "llm2" in results:
answer = results["llm2"]["replies"][0]
elif "router" in results and "no_answer" in results["router"]:
answer = results["router"]["no_answer"]
else:
answer = "Sorry, a mistake occured"
return answer
if __name__ == "__main__":
gr.ChatInterface(chat, type="messages").launch()