|
import io |
|
import os |
|
|
|
|
|
import gradio as gr |
|
import librosa |
|
import numpy as np |
|
import soundfile |
|
from inference.infer_tool import Svc |
|
import logging |
|
|
|
logging.getLogger('numba').setLevel(logging.WARNING) |
|
logging.getLogger('markdown_it').setLevel(logging.WARNING) |
|
logging.getLogger('urllib3').setLevel(logging.WARNING) |
|
logging.getLogger('matplotlib').setLevel(logging.WARNING) |
|
|
|
config_path = "configs/config.json" |
|
|
|
model = Svc("logs/44k/G_130400.pth", "configs/config.json", cluster_model_path="logs/44k/kmeans.pt") |
|
|
|
|
|
|
|
def vc_fn(sid, input_audio, vc_transform, auto_f0,cluster_ratio, slice_db, noise_scale): |
|
if input_audio is None: |
|
return "You need to upload an audio", None |
|
sampling_rate, audio = input_audio |
|
|
|
duration = audio.shape[0] / sampling_rate |
|
if duration > 90: |
|
return "请上传小于90s的音频,需要转换长音频请本地进行转换", None |
|
audio = (audio / np.iinfo(audio.dtype).max).astype(np.float32) |
|
if len(audio.shape) > 1: |
|
audio = librosa.to_mono(audio.transpose(1, 0)) |
|
if sampling_rate != 16000: |
|
audio = librosa.resample(audio, orig_sr=sampling_rate, target_sr=16000) |
|
print(audio.shape) |
|
out_wav_path = "temp.wav" |
|
soundfile.write(out_wav_path, audio, 16000, format="wav") |
|
print( cluster_ratio, auto_f0, noise_scale) |
|
_audio = model.slice_inference(out_wav_path, sid, vc_transform, slice_db, cluster_ratio, auto_f0, noise_scale) |
|
return "Success", (44100, _audio) |
|
|
|
|
|
app = gr.Blocks() |
|
with app: |
|
with gr.Tabs(): |
|
with gr.TabItem("Basic"): |
|
gr.Markdown(value=""" |
|
# sovits-emu-voice-transform | OtoriEmu的在线变声器 |
|
|
|
[![Visitors](https://api.visitorbadge.io/api/visitors?path=https%3A%2F%2Fhuggingface.co%2Fspaces%2FMashiroSA%2Fsovits-emu-voice-transform&labelColor=%23f47373&countColor=%23555555)](https://visitorbadge.io/status?path=https%3A%2F%2Fhuggingface.co%2Fspaces%2FMashiroSA%2Fsovits-emu-voice-transform) |
|
|
|
_Modified from public demo based on so-vits-svc 4.0._ |
|
基于so-vits-svc 4.0的公开demo修改而成。 |
|
|
|
_The dialogue training model based on the role Otori Emu has shown good results in dialogue, however the vocal of music conversion is not as expected._ |
|
所使用的基于角色鳳えむ的对话训练的模型,在对话中具有良好效果,乐音转换欠佳。 |
|
|
|
_Only authorized running on huggingface, with free instance conversion is much slower. Please be patient._ |
|
仅授权在huggingface上运行,运行使用免费实例转换很慢很慢很慢很慢,请耐心等待。 |
|
|
|
```text |
|
For academic exchange only and not for illegal purposes. We have no relationship or interest with SEGA or related organizations. |
|
The model derivation output is only similar to Otori Emu and there is inevitable loss, which cannot be fully simulated. |
|
If you have any questions, please send an email or forum for inquiry. |
|
``` |
|
""") |
|
spks = list(model.spk2id.keys()) |
|
sid = gr.Dropdown(label="音色", choices=spks, value=spks[0]) |
|
vc_input3 = gr.Audio(label="上传音频(长度小于90秒)") |
|
vc_transform = gr.Number(label="变调(整数,可以正负,半音数量,升高八度就是12,当你觉得音色不准确时可以适当调高或降低)", value=0) |
|
cluster_ratio = gr.Number(label="聚类模型混合比例,0-1之间,默认为0不启用聚类,能提升音色相似度,但会导致咬字下降(如果使用建议0.5左右)", value=0) |
|
auto_f0 = gr.Checkbox(label="自动f0预测,配合聚类模型f0预测效果更好,会导致变调功能失效(仅限转换语音,歌声不要勾选此项会究极跑调)", value=False) |
|
slice_db = gr.Number(label="切片阈值", value=-40) |
|
noise_scale = gr.Number(label="noise_scale 建议不要动,会影响音质,玄学参数", value=0.4) |
|
vc_submit = gr.Button("转换", variant="primary") |
|
vc_output1 = gr.Textbox(label="Output Message") |
|
vc_output2 = gr.Audio(label="Output Audio") |
|
vc_submit.click(vc_fn, [sid, vc_input3, vc_transform,auto_f0,cluster_ratio, slice_db, noise_scale], [vc_output1, vc_output2]) |
|
|
|
app.launch() |
|
|
|
|
|
|
|
|