MashiroSA commited on
Commit
b87af40
1 Parent(s): 31ec6c7

feat: init

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
CppDataProcess/F0Preprocess.cpp ADDED
@@ -0,0 +1,153 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #include "F0Preprocess.hpp"
2
+
3
+
4
+ void F0PreProcess::compute_f0(const double* audio, int64_t len)
5
+ {
6
+ DioOption Doption;
7
+ InitializeDioOption(&Doption);
8
+ Doption.f0_ceil = 800;
9
+ Doption.frame_period = 1000.0 * hop / fs;
10
+ f0Len = GetSamplesForDIO(fs, (int)len, Doption.frame_period);
11
+ const auto tp = new double[f0Len];
12
+ const auto tmpf0 = new double[f0Len];
13
+ rf0 = new double[f0Len];
14
+ Dio(audio, (int)len, fs, &Doption, tp, tmpf0);
15
+ StoneMask(audio, (int)len, fs, tp, tmpf0, (int)f0Len, rf0);
16
+ delete[] tmpf0;
17
+ delete[] tp;
18
+ }
19
+
20
+ std::vector<double> arange(double start,double end,double step = 1.0,double div = 1.0)
21
+ {
22
+ std::vector<double> output;
23
+ while(start<end)
24
+ {
25
+ output.push_back(start / div);
26
+ start += step;
27
+ }
28
+ return output;
29
+ }
30
+
31
+ void F0PreProcess::InterPf0(int64_t len)
32
+ {
33
+ const auto xi = arange(0.0, (double)f0Len * (double)len, (double)f0Len, (double)len);
34
+ const auto tmp = new double[xi.size() + 1];
35
+ interp1(arange(0, (double)f0Len).data(), rf0, static_cast<int>(f0Len), xi.data(), (int)xi.size(), tmp);
36
+ for (size_t i = 0; i < xi.size(); i++)
37
+ if (isnan(tmp[i]))
38
+ tmp[i] = 0.0;
39
+ delete[] rf0;
40
+ rf0 = nullptr;
41
+ rf0 = tmp;
42
+ f0Len = (int64_t)xi.size();
43
+ }
44
+
45
+ long long* F0PreProcess::f0Log()
46
+ {
47
+ const auto tmp = new long long[f0Len];
48
+ const auto f0_mel = new double[f0Len];
49
+ for (long long i = 0; i < f0Len; i++)
50
+ {
51
+ f0_mel[i] = 1127 * log(1.0 + rf0[i] / 700.0);
52
+ if (f0_mel[i] > 0.0)
53
+ f0_mel[i] = (f0_mel[i] - f0_mel_min) * (f0_bin - 2.0) / (f0_mel_max - f0_mel_min) + 1.0;
54
+ if (f0_mel[i] < 1.0)
55
+ f0_mel[i] = 1;
56
+ if (f0_mel[i] > f0_bin - 1)
57
+ f0_mel[i] = f0_bin - 1;
58
+ tmp[i] = (long long)round(f0_mel[i]);
59
+ }
60
+ delete[] f0_mel;
61
+ delete[] rf0;
62
+ rf0 = nullptr;
63
+ return tmp;
64
+ }
65
+
66
+ std::vector<long long> F0PreProcess::GetF0AndOtherInput(const double* audio, int64_t audioLen, int64_t hubLen, int64_t tran)
67
+ {
68
+ compute_f0(audio, audioLen);
69
+ for (int64_t i = 0; i < f0Len; ++i)
70
+ {
71
+ rf0[i] = rf0[i] * pow(2.0, static_cast<double>(tran) / 12.0);
72
+ if (rf0[i] < 0.001)
73
+ rf0[i] = NAN;
74
+ }
75
+ InterPf0(hubLen);
76
+ const auto O0f = f0Log();
77
+ std::vector<long long> Of0(O0f, O0f + f0Len);
78
+ delete[] O0f;
79
+ return Of0;
80
+ }
81
+
82
+ std::vector<long long> getAligments(size_t specLen, size_t hubertLen)
83
+ {
84
+ std::vector<long long> mel2ph(specLen + 1, 0);
85
+
86
+ size_t startFrame = 0;
87
+ const double ph_durs = static_cast<double>(specLen) / static_cast<double>(hubertLen);
88
+ for (size_t iph = 0; iph < hubertLen; ++iph)
89
+ {
90
+ const auto endFrame = static_cast<size_t>(round(static_cast<double>(iph) * ph_durs + ph_durs));
91
+ for (auto j = startFrame; j < endFrame + 1; ++j)
92
+ mel2ph[j] = static_cast<long long>(iph) + 1;
93
+ startFrame = endFrame + 1;
94
+ }
95
+
96
+ return mel2ph;
97
+ }
98
+
99
+ std::vector<float> F0PreProcess::GetF0AndOtherInputF0(const double* audio, int64_t audioLen, int64_t tran)
100
+ {
101
+ compute_f0(audio, audioLen);
102
+ for (int64_t i = 0; i < f0Len; ++i)
103
+ {
104
+ rf0[i] = log2(rf0[i] * pow(2.0, static_cast<double>(tran) / 12.0));
105
+ if (rf0[i] < 0.001)
106
+ rf0[i] = NAN;
107
+ }
108
+ const int64_t specLen = audioLen / hop;
109
+ InterPf0(specLen);
110
+
111
+ std::vector<float> Of0(specLen, 0.0);
112
+
113
+ double last_value = 0.0;
114
+ for (int64_t i = 0; i < specLen; ++i)
115
+ {
116
+ if (rf0[i] <= 0.0)
117
+ {
118
+ int64_t j = i + 1;
119
+ for (; j < specLen; ++j)
120
+ {
121
+ if (rf0[j] > 0.0)
122
+ break;
123
+ }
124
+ if (j < specLen - 1)
125
+ {
126
+ if (last_value > 0.0)
127
+ {
128
+ const auto step = (rf0[j] - rf0[i - 1]) / double(j - i);
129
+ for (int64_t k = i; k < j; ++k)
130
+ Of0[k] = float(rf0[i - 1] + step * double(k - i + 1));
131
+ }
132
+ else
133
+ for (int64_t k = i; k < j; ++k)
134
+ Of0[k] = float(rf0[j]);
135
+ i = j;
136
+ }
137
+ else
138
+ {
139
+ for (int64_t k = i; k < specLen; ++k)
140
+ Of0[k] = float(last_value);
141
+ i = specLen;
142
+ }
143
+ }
144
+ else
145
+ {
146
+ Of0[i] = float(rf0[i - 1]);
147
+ last_value = rf0[i];
148
+ }
149
+ }
150
+ delete[] rf0;
151
+ rf0 = nullptr;
152
+ return Of0;
153
+ }
CppDataProcess/F0Preprocess.hpp ADDED
@@ -0,0 +1,36 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #include "world/dio.h"
2
+ #include "world/stonemask.h"
3
+ #include "world/matlabfunctions.h"
4
+ #include <string>
5
+ #include <vector>
6
+
7
+ //Cpp F0 Preprocess
8
+
9
+ class F0PreProcess
10
+ {
11
+ public:
12
+ int fs;
13
+ short hop;
14
+ const int f0_bin = 256;
15
+ const double f0_max = 1100.0;
16
+ const double f0_min = 50.0;
17
+ const double f0_mel_min = 1127.0 * log(1.0 + f0_min / 700.0);
18
+ const double f0_mel_max = 1127.0 * log(1.0 + f0_max / 700.0);
19
+ F0PreProcess(int sr = 16000, short h = 160) :fs(sr), hop(h) {}
20
+ ~F0PreProcess()
21
+ {
22
+ delete[] rf0;
23
+ rf0 = nullptr;
24
+ }
25
+ void compute_f0(const double* audio, int64_t len);
26
+ void InterPf0(int64_t len);
27
+ long long* f0Log();
28
+ int64_t getLen()const { return f0Len; }
29
+ std::vector<long long> GetF0AndOtherInput(const double* audio, int64_t audioLen, int64_t hubLen, int64_t tran);
30
+ std::vector<float> GetF0AndOtherInputF0(const double* audio, int64_t audioLen, int64_t tran);
31
+ private:
32
+ double* rf0 = nullptr;
33
+ int64_t f0Len = 0;
34
+ };
35
+
36
+ std::vector<long long> getAligments(size_t specLen, size_t hubertLen);
CppDataProcess/Slicer.hpp ADDED
@@ -0,0 +1,82 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #include <string>
2
+ #include <vector>
3
+ #include "Wav.hpp"
4
+
5
+ struct SliceResult
6
+ {
7
+ std::vector<unsigned long long> SliceOffset;
8
+ std::vector<bool> SliceTag;
9
+ cutResult(std::vector<unsigned long long>&& O, std::vector<bool>&& T) :SliceOffset(O), SliceTag(T) {}
10
+ };
11
+
12
+ double getAvg(const short* start, const short* end)
13
+ {
14
+ const auto size = end - start + 1;
15
+ auto avg = (double)(*start);
16
+ for (auto i = 1; i < size; i++)
17
+ {
18
+ avg = avg + (abs((double)start[i]) - avg) / (double)(i + 1ull);
19
+ }
20
+ return avg;
21
+ }
22
+
23
+ inline SliceResult SliceWav(Wav& input, double threshold, unsigned long minLen, unsigned short frame_len, unsigned short frame_shift)
24
+ {
25
+ const auto header = input.getHeader();
26
+ if (header.Subchunk2Size < minLen * header.bytesPerSec)
27
+ return { {0,header.Subchunk2Size},{true} };
28
+ auto ptr = input.getData();
29
+ std::vector<unsigned long long> output;
30
+ std::vector<bool> tag;
31
+ auto n = (header.Subchunk2Size / frame_shift) - 2 * (frame_len / frame_shift);
32
+ unsigned long nn = 0;
33
+ bool cutTag = true;
34
+ output.emplace_back(0);
35
+ while (n--)
36
+ {
37
+ //if (nn > minLen * header.bytesPerSec)
38
+ if (cutTag)
39
+ {
40
+ const auto vol = abs(getAvg((short*)ptr, (short*)ptr + frame_len));
41
+ if (vol < threshold)
42
+ {
43
+ cutTag = false;
44
+ if (nn > minLen * header.bytesPerSec)
45
+ {
46
+ nn = 0;
47
+ output.emplace_back((ptr - input.getData()) + (frame_len / 2));
48
+ }
49
+ }
50
+ else
51
+ {
52
+ cutTag = true;
53
+ }
54
+ }
55
+ else
56
+ {
57
+ const auto vol = abs(getAvg((short*)ptr, (short*)ptr + frame_len));
58
+ if (vol < threshold)
59
+ {
60
+ cutTag = false;
61
+ }
62
+ else
63
+ {
64
+ cutTag = true;
65
+ if (nn > minLen * header.bytesPerSec)
66
+ {
67
+ nn = 0;
68
+ output.emplace_back((ptr - input.getData()) + (frame_len / 2));
69
+ }
70
+ }
71
+ }
72
+ nn += frame_shift;
73
+ ptr += frame_shift;
74
+ }
75
+ output.push_back(header.Subchunk2Size);
76
+ for (size_t i = 1; i < output.size(); i++)
77
+ {
78
+ tag.push_back(abs(getAvg((short*)(input.getData() + output[i - 1]), (short*)(input.getData() + output[i]))) > threshold);
79
+ }
80
+ return { std::move(output),std::move(tag) };
81
+ }
82
+
CppDataProcess/Wav.cpp ADDED
@@ -0,0 +1,151 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #include "Wav.hpp"
2
+
3
+ Wav::Wav(const wchar_t* Path) :header(WAV_HEADER()) {
4
+ char buf[1024];
5
+ FILE* stream;
6
+ _wfreopen_s(&stream, Path, L"rb", stderr);
7
+ if (stream == nullptr) {
8
+ throw (std::exception("File not exists"));
9
+ }
10
+ fread(buf, 1, HEAD_LENGTH, stream);
11
+ int pos = 0;
12
+ while (pos < HEAD_LENGTH) {
13
+ if ((buf[pos] == 'R') && (buf[pos + 1] == 'I') && (buf[pos + 2] == 'F') && (buf[pos + 3] == 'F')) {
14
+ pos += 4;
15
+ break;
16
+ }
17
+ ++pos;
18
+ }
19
+ if (pos >= HEAD_LENGTH)
20
+ throw (std::exception("Don't order fried rice (annoyed)"));
21
+ header.ChunkSize = *(int*)&buf[pos];
22
+ pos += 8;
23
+ while (pos < HEAD_LENGTH) {
24
+ if ((buf[pos] == 'f') && (buf[pos + 1] == 'm') && (buf[pos + 2] == 't')) {
25
+ pos += 4;
26
+ break;
27
+ }
28
+ ++pos;
29
+ }
30
+ if (pos >= HEAD_LENGTH)
31
+ throw (std::exception("Don't order fried rice (annoyed)"));
32
+ header.Subchunk1Size = *(int*)&buf[pos];
33
+ pos += 4;
34
+ header.AudioFormat = *(short*)&buf[pos];
35
+ pos += 2;
36
+ header.NumOfChan = *(short*)&buf[pos];
37
+ pos += 2;
38
+ header.SamplesPerSec = *(int*)&buf[pos];
39
+ pos += 4;
40
+ header.bytesPerSec = *(int*)&buf[pos];
41
+ pos += 4;
42
+ header.blockAlign = *(short*)&buf[pos];
43
+ pos += 2;
44
+ header.bitsPerSample = *(short*)&buf[pos];
45
+ pos += 2;
46
+ while (pos < HEAD_LENGTH) {
47
+ if ((buf[pos] == 'd') && (buf[pos + 1] == 'a') && (buf[pos + 2] == 't') && (buf[pos + 3] == 'a')) {
48
+ pos += 4;
49
+ break;
50
+ }
51
+ ++pos;
52
+ }
53
+ if (pos >= HEAD_LENGTH)
54
+ throw (std::exception("Don't order fried rice (annoyed)"));
55
+ header.Subchunk2Size = *(int*)&buf[pos];
56
+ pos += 4;
57
+ StartPos = pos;
58
+ Data = new char[header.Subchunk2Size + 1];
59
+ fseek(stream, StartPos, SEEK_SET);
60
+ fread(Data, 1, header.Subchunk2Size, stream);
61
+ if (stream != nullptr) {
62
+ fclose(stream);
63
+ }
64
+ SData = reinterpret_cast<int16_t*>(Data);
65
+ dataSize = header.Subchunk2Size / 2;
66
+ }
67
+
68
+ Wav::Wav(const Wav& input) :header(WAV_HEADER()) {
69
+ Data = new char[(input.header.Subchunk2Size + 1)];
70
+ if (Data == nullptr) { throw std::exception("OOM"); }
71
+ memcpy(header.RIFF, input.header.RIFF, 4);
72
+ memcpy(header.fmt, input.header.fmt, 4);
73
+ memcpy(header.WAVE, input.header.WAVE, 4);
74
+ memcpy(header.Subchunk2ID, input.header.Subchunk2ID, 4);
75
+ header.ChunkSize = input.header.ChunkSize;
76
+ header.Subchunk1Size = input.header.Subchunk1Size;
77
+ header.AudioFormat = input.header.AudioFormat;
78
+ header.NumOfChan = input.header.NumOfChan;
79
+ header.SamplesPerSec = input.header.SamplesPerSec;
80
+ header.bytesPerSec = input.header.bytesPerSec;
81
+ header.blockAlign = input.header.blockAlign;
82
+ header.bitsPerSample = input.header.bitsPerSample;
83
+ header.Subchunk2Size = input.header.Subchunk2Size;
84
+ StartPos = input.StartPos;
85
+ memcpy(Data, input.Data, input.header.Subchunk2Size);
86
+ SData = reinterpret_cast<int16_t*>(Data);
87
+ dataSize = header.Subchunk2Size / 2;
88
+ }
89
+
90
+ Wav::Wav(Wav&& input) noexcept
91
+ {
92
+ Data = input.Data;
93
+ input.Data = nullptr;
94
+ memcpy(header.RIFF, input.header.RIFF, 4);
95
+ memcpy(header.fmt, input.header.fmt, 4);
96
+ memcpy(header.WAVE, input.header.WAVE, 4);
97
+ memcpy(header.Subchunk2ID, input.header.Subchunk2ID, 4);
98
+ header.ChunkSize = input.header.ChunkSize;
99
+ header.Subchunk1Size = input.header.Subchunk1Size;
100
+ header.AudioFormat = input.header.AudioFormat;
101
+ header.NumOfChan = input.header.NumOfChan;
102
+ header.SamplesPerSec = input.header.SamplesPerSec;
103
+ header.bytesPerSec = input.header.bytesPerSec;
104
+ header.blockAlign = input.header.blockAlign;
105
+ header.bitsPerSample = input.header.bitsPerSample;
106
+ header.Subchunk2Size = input.header.Subchunk2Size;
107
+ StartPos = input.StartPos;
108
+ SData = reinterpret_cast<int16_t*>(Data);
109
+ dataSize = header.Subchunk2Size / 2;
110
+ }
111
+
112
+ Wav& Wav::operator=(Wav&& input) noexcept
113
+ {
114
+ destory();
115
+ Data = input.Data;
116
+ input.Data = nullptr;
117
+ memcpy(header.RIFF, input.header.RIFF, 4);
118
+ memcpy(header.fmt, input.header.fmt, 4);
119
+ memcpy(header.WAVE, input.header.WAVE, 4);
120
+ memcpy(header.Subchunk2ID, input.header.Subchunk2ID, 4);
121
+ header.ChunkSize = input.header.ChunkSize;
122
+ header.Subchunk1Size = input.header.Subchunk1Size;
123
+ header.AudioFormat = input.header.AudioFormat;
124
+ header.NumOfChan = input.header.NumOfChan;
125
+ header.SamplesPerSec = input.header.SamplesPerSec;
126
+ header.bytesPerSec = input.header.bytesPerSec;
127
+ header.blockAlign = input.header.blockAlign;
128
+ header.bitsPerSample = input.header.bitsPerSample;
129
+ header.Subchunk2Size = input.header.Subchunk2Size;
130
+ StartPos = input.StartPos;
131
+ SData = reinterpret_cast<int16_t*>(Data);
132
+ dataSize = header.Subchunk2Size / 2;
133
+ return *this;
134
+ }
135
+
136
+ Wav& Wav::cat(const Wav& input)
137
+ {
138
+ if (header.AudioFormat != 1) return *this;
139
+ if (header.SamplesPerSec != input.header.bitsPerSample || header.NumOfChan != input.header.NumOfChan) return *this;
140
+ char* buffer = new char[(int64_t)header.Subchunk2Size + (int64_t)input.header.Subchunk2Size + 1];
141
+ if (buffer == nullptr)return *this;
142
+ memcpy(buffer, Data, header.Subchunk2Size);
143
+ memcpy(buffer + header.Subchunk2Size, input.Data, input.header.Subchunk2Size);
144
+ header.ChunkSize += input.header.Subchunk2Size;
145
+ header.Subchunk2Size += input.header.Subchunk2Size;
146
+ delete[] Data;
147
+ Data = buffer;
148
+ SData = reinterpret_cast<int16_t*>(Data);
149
+ dataSize = header.Subchunk2Size / 2;
150
+ return *this;
151
+ }
CppDataProcess/Wav.hpp ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ class Wav {
2
+ public:
3
+
4
+ struct WAV_HEADER {
5
+ char RIFF[4] = { 'R','I','F','F' }; //RIFF��ʶ
6
+ unsigned long ChunkSize; //�ļ���С-8
7
+ char WAVE[4] = { 'W','A','V','E' }; //WAVE��
8
+ char fmt[4] = { 'f','m','t',' ' }; //fmt��
9
+ unsigned long Subchunk1Size; //fmt���С
10
+ unsigned short AudioFormat; //�����ʽ
11
+ unsigned short NumOfChan; //������
12
+ unsigned long SamplesPerSec; //������
13
+ unsigned long bytesPerSec; //ÿ�����ֽ���
14
+ unsigned short blockAlign; //�������ֽ�
15
+ unsigned short bitsPerSample; //�������
16
+ char Subchunk2ID[4] = { 'd','a','t','a' }; //���ݿ�
17
+ unsigned long Subchunk2Size; //���ݿ��С
18
+ WAV_HEADER(unsigned long cs = 36, unsigned long sc1s = 16, unsigned short af = 1, unsigned short nc = 1, unsigned long sr = 22050, unsigned long bps = 44100, unsigned short ba = 2, unsigned short bips = 16, unsigned long sc2s = 0) :ChunkSize(cs), Subchunk1Size(sc1s), AudioFormat(af), NumOfChan(nc), SamplesPerSec(sr), bytesPerSec(bps), blockAlign(ba), bitsPerSample(bips), Subchunk2Size(sc2s) {}
19
+ };
20
+ using iterator = int16_t*;
21
+ Wav(unsigned long cs = 36, unsigned long sc1s = 16, unsigned short af = 1, unsigned short nc = 1, unsigned long sr = 22050, unsigned long bps = 44100, unsigned short ba = 2, unsigned short bips = 16, unsigned long sc2s = 0) :header({
22
+ cs,
23
+ sc1s,
24
+ af,
25
+ nc,
26
+ sr,
27
+ bps,
28
+ ba,
29
+ bips,
30
+ sc2s
31
+ }), Data(nullptr), StartPos(44) {
32
+ dataSize = 0;
33
+ SData = nullptr;
34
+ }
35
+ Wav(unsigned long sr, unsigned long length, const void* data) :header({
36
+ 36,
37
+ 16,
38
+ 1,
39
+ 1,
40
+ sr,
41
+ sr * 2,
42
+ 2,
43
+ 16,
44
+ length
45
+ }), Data(new char[length + 1]), StartPos(44)
46
+ {
47
+ header.ChunkSize = 36 + length;
48
+ memcpy(Data, data, length);
49
+ SData = reinterpret_cast<int16_t*>(Data);
50
+ dataSize = length / 2;
51
+ }
52
+ Wav(const wchar_t* Path);
53
+ Wav(const Wav& input);
54
+ Wav(Wav&& input) noexcept;
55
+ Wav& operator=(const Wav& input) = delete;
56
+ Wav& operator=(Wav&& input) noexcept;
57
+ ~Wav() { destory(); }
58
+ Wav& cat(const Wav& input);
59
+ bool isEmpty() const { return this->header.Subchunk2Size == 0; }
60
+ const char* getData() const { return Data; }
61
+ char* getData() { return Data; }
62
+ WAV_HEADER getHeader() const { return header; }
63
+ WAV_HEADER& Header() { return header; }
64
+ void destory() const { delete[] Data; }
65
+ void changeData(const void* indata,long length,int sr)
66
+ {
67
+ delete[] Data;
68
+ Data = new char[length];
69
+ memcpy(Data, indata, length);
70
+ header.ChunkSize = 36 + length;
71
+ header.Subchunk2Size = length;
72
+ header.SamplesPerSec = sr;
73
+ header.bytesPerSec = 2 * sr;
74
+ }
75
+ int16_t& operator[](const size_t index) const
76
+ {
77
+ if (index < dataSize)
78
+ return *(SData + index);
79
+ return *(SData + dataSize - 1);
80
+ }
81
+ iterator begin() const
82
+ {
83
+ return reinterpret_cast<int16_t*>(Data);
84
+ }
85
+ iterator end() const
86
+ {
87
+ return reinterpret_cast<int16_t*>(Data + header.Subchunk2Size);
88
+ }
89
+ int64_t getDataLen()const
90
+ {
91
+ return static_cast<int64_t>(dataSize);
92
+ }
93
+ private:
94
+ WAV_HEADER header;
95
+ char* Data;
96
+ int16_t* SData;
97
+ size_t dataSize;
98
+ int StartPos;
99
+ };
CppDataProcess/readme.md ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ ## F0Preprocess
2
+ 请前往 https://github.com/JeremyCCHsu/Python-Wrapper-for-World-Vocoder 下载PyWorld的源代码并编译出静态库并链接到你的项目之中,然后调用此头文件
3
+
4
+ ## Slicer
5
+ 一个简单的切片机
6
+
7
+ ---
8
+ ~~上面的东西是直接从MoeSS的代码里面抽出来的,可以作为预置预处理的替代品()~~
LICENSE ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ MIT License
2
+
3
+ Copyright (c) 2021 Jingyi Li
4
+
5
+ Permission is hereby granted, free of charge, to any person obtaining a copy
6
+ of this software and associated documentation files (the "Software"), to deal
7
+ in the Software without restriction, including without limitation the rights
8
+ to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
9
+ copies of the Software, and to permit persons to whom the Software is
10
+ furnished to do so, subject to the following conditions:
11
+
12
+ The above copyright notice and this permission notice shall be included in all
13
+ copies or substantial portions of the Software.
14
+
15
+ THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16
+ IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17
+ FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18
+ AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19
+ LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20
+ OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21
+ SOFTWARE.
app.py ADDED
@@ -0,0 +1,69 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import io
2
+ import os
3
+
4
+ # os.system("wget -P cvec/ https://huggingface.co/spaces/innnky/nanami/resolve/main/checkpoint_best_legacy_500.pt")
5
+ import gradio as gr
6
+ import librosa
7
+ import numpy as np
8
+ import soundfile
9
+ from inference.infer_tool import Svc
10
+ import logging
11
+
12
+ logging.getLogger('numba').setLevel(logging.WARNING)
13
+ logging.getLogger('markdown_it').setLevel(logging.WARNING)
14
+ logging.getLogger('urllib3').setLevel(logging.WARNING)
15
+ logging.getLogger('matplotlib').setLevel(logging.WARNING)
16
+
17
+ config_path = "configs/config.json"
18
+
19
+ model = Svc("logs/44k/G_114400.pth", "configs/config.json", cluster_model_path="logs/44k/kmeans_10000.pt")
20
+
21
+
22
+
23
+ def vc_fn(sid, input_audio, vc_transform, auto_f0,cluster_ratio, slice_db, noise_scale):
24
+ if input_audio is None:
25
+ return "You need to upload an audio", None
26
+ sampling_rate, audio = input_audio
27
+ # print(audio.shape,sampling_rate)
28
+ duration = audio.shape[0] / sampling_rate
29
+ if duration > 90:
30
+ return "请上传小于90s的音频,需要转换长音频请本地进行转换", None
31
+ audio = (audio / np.iinfo(audio.dtype).max).astype(np.float32)
32
+ if len(audio.shape) > 1:
33
+ audio = librosa.to_mono(audio.transpose(1, 0))
34
+ if sampling_rate != 16000:
35
+ audio = librosa.resample(audio, orig_sr=sampling_rate, target_sr=16000)
36
+ print(audio.shape)
37
+ out_wav_path = "temp.wav"
38
+ soundfile.write(out_wav_path, audio, 16000, format="wav")
39
+ print( cluster_ratio, auto_f0, noise_scale)
40
+ _audio = model.slice_inference(out_wav_path, sid, vc_transform, slice_db, cluster_ratio, auto_f0, noise_scale)
41
+ return "Success", (44100, _audio)
42
+
43
+
44
+ app = gr.Blocks()
45
+ with app:
46
+ with gr.Tabs():
47
+ with gr.TabItem("Basic"):
48
+ gr.Markdown(value="""
49
+ sovits4.0 在线demo
50
+
51
+ 此demo为预训练底模在线demo,使用数据:云灏 即霜 辉宇·星AI 派蒙 绫地宁宁
52
+ """)
53
+ spks = list(model.spk2id.keys())
54
+ sid = gr.Dropdown(label="音色", choices=spks, value=spks[0])
55
+ vc_input3 = gr.Audio(label="上传音频(长度小于90秒)")
56
+ vc_transform = gr.Number(label="变调(整数,可以正负,半音数量,升高八度就是12)", value=0)
57
+ cluster_ratio = gr.Number(label="聚类模型混合比例,0-1之间,默认为0不启用聚类,能提升音色相似度,但会导致咬字下降(如果使用建议0.5左右)", value=0)
58
+ auto_f0 = gr.Checkbox(label="自动f0预测,配合聚类模型f0预测效果更好,会导致变调功能失效(仅限转换语音,歌声不要勾选此项会究极跑调)", value=False)
59
+ slice_db = gr.Number(label="切片阈值", value=-40)
60
+ noise_scale = gr.Number(label="noise_scale 建议不要动,会影响音质,玄学参数", value=0.4)
61
+ vc_submit = gr.Button("转换", variant="primary")
62
+ vc_output1 = gr.Textbox(label="Output Message")
63
+ vc_output2 = gr.Audio(label="Output Audio")
64
+ vc_submit.click(vc_fn, [sid, vc_input3, vc_transform,auto_f0,cluster_ratio, slice_db, noise_scale], [vc_output1, vc_output2])
65
+
66
+ app.launch()
67
+
68
+
69
+
cluster/__init__.py ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import torch
3
+ from sklearn.cluster import KMeans
4
+
5
+ def get_cluster_model(ckpt_path):
6
+ checkpoint = torch.load(ckpt_path)
7
+ kmeans_dict = {}
8
+ for spk, ckpt in checkpoint.items():
9
+ km = KMeans(ckpt["n_features_in_"])
10
+ km.__dict__["n_features_in_"] = ckpt["n_features_in_"]
11
+ km.__dict__["_n_threads"] = ckpt["_n_threads"]
12
+ km.__dict__["cluster_centers_"] = ckpt["cluster_centers_"]
13
+ kmeans_dict[spk] = km
14
+ return kmeans_dict
15
+
16
+ def get_cluster_result(model, x, speaker):
17
+ """
18
+ x: np.array [t, 256]
19
+ return cluster class result
20
+ """
21
+ return model[speaker].predict(x)
22
+
23
+ def get_cluster_center_result(model, x,speaker):
24
+ """x: np.array [t, 256]"""
25
+ predict = model[speaker].predict(x)
26
+ return model[speaker].cluster_centers_[predict]
27
+
28
+ def get_center(model, x,speaker):
29
+ return model[speaker].cluster_centers_[x]
cluster/train_cluster.py ADDED
@@ -0,0 +1,89 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ from glob import glob
3
+ from pathlib import Path
4
+ import torch
5
+ import logging
6
+ import argparse
7
+ import torch
8
+ import numpy as np
9
+ from sklearn.cluster import KMeans, MiniBatchKMeans
10
+ import tqdm
11
+ logging.basicConfig(level=logging.INFO)
12
+ logger = logging.getLogger(__name__)
13
+ import time
14
+ import random
15
+
16
+ def train_cluster(in_dir, n_clusters, use_minibatch=True, verbose=False):
17
+
18
+ logger.info(f"Loading features from {in_dir}")
19
+ features = []
20
+ nums = 0
21
+ for path in tqdm.tqdm(in_dir.glob("*.soft.pt")):
22
+ features.append(torch.load(path).squeeze(0).numpy().T)
23
+ # print(features[-1].shape)
24
+ features = np.concatenate(features, axis=0)
25
+ print(nums, features.nbytes/ 1024**2, "MB , shape:",features.shape, features.dtype)
26
+ features = features.astype(np.float32)
27
+ logger.info(f"Clustering features of shape: {features.shape}")
28
+ t = time.time()
29
+ if use_minibatch:
30
+ kmeans = MiniBatchKMeans(n_clusters=n_clusters,verbose=verbose, batch_size=4096, max_iter=80).fit(features)
31
+ else:
32
+ kmeans = KMeans(n_clusters=n_clusters,verbose=verbose).fit(features)
33
+ print(time.time()-t, "s")
34
+
35
+ x = {
36
+ "n_features_in_": kmeans.n_features_in_,
37
+ "_n_threads": kmeans._n_threads,
38
+ "cluster_centers_": kmeans.cluster_centers_,
39
+ }
40
+ print("end")
41
+
42
+ return x
43
+
44
+
45
+ if __name__ == "__main__":
46
+
47
+ parser = argparse.ArgumentParser()
48
+ parser.add_argument('--dataset', type=Path, default="./dataset/44k",
49
+ help='path of training data directory')
50
+ parser.add_argument('--output', type=Path, default="logs/44k",
51
+ help='path of model output directory')
52
+
53
+ args = parser.parse_args()
54
+
55
+ checkpoint_dir = args.output
56
+ dataset = args.dataset
57
+ n_clusters = 10000
58
+
59
+ ckpt = {}
60
+ for spk in os.listdir(dataset):
61
+ if os.path.isdir(dataset/spk):
62
+ print(f"train kmeans for {spk}...")
63
+ in_dir = dataset/spk
64
+ x = train_cluster(in_dir, n_clusters, verbose=False)
65
+ ckpt[spk] = x
66
+
67
+ checkpoint_path = checkpoint_dir / f"kmeans_{n_clusters}.pt"
68
+ checkpoint_path.parent.mkdir(exist_ok=True, parents=True)
69
+ torch.save(
70
+ ckpt,
71
+ checkpoint_path,
72
+ )
73
+
74
+
75
+ # import cluster
76
+ # for spk in tqdm.tqdm(os.listdir("dataset")):
77
+ # if os.path.isdir(f"dataset/{spk}"):
78
+ # print(f"start kmeans inference for {spk}...")
79
+ # for feature_path in tqdm.tqdm(glob(f"dataset/{spk}/*.discrete.npy", recursive=True)):
80
+ # mel_path = feature_path.replace(".discrete.npy",".mel.npy")
81
+ # mel_spectrogram = np.load(mel_path)
82
+ # feature_len = mel_spectrogram.shape[-1]
83
+ # c = np.load(feature_path)
84
+ # c = utils.tools.repeat_expand_2d(torch.FloatTensor(c), feature_len).numpy()
85
+ # feature = c.T
86
+ # feature_class = cluster.get_cluster_result(feature, spk)
87
+ # np.save(feature_path.replace(".discrete.npy", ".discrete_class.npy"), feature_class)
88
+
89
+
configs/config.json ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "train": {
3
+ "log_interval": 200,
4
+ "eval_interval": 800,
5
+ "seed": 1234,
6
+ "epochs": 10000,
7
+ "learning_rate": 0.0001,
8
+ "betas": [
9
+ 0.8,
10
+ 0.99
11
+ ],
12
+ "eps": 1e-09,
13
+ "batch_size": 16,
14
+ "fp16_run": false,
15
+ "bf16_run": false,
16
+ "lr_decay": 0.999875,
17
+ "segment_size": 10240,
18
+ "init_lr_ratio": 1,
19
+ "warmup_epochs": 0,
20
+ "c_mel": 45,
21
+ "c_kl": 1.0,
22
+ "use_sr": true,
23
+ "max_speclen": 512,
24
+ "port": "8001",
25
+ "keep_ckpts": 3
26
+ },
27
+ "data": {
28
+ "training_files": "filelists/44k/train.txt",
29
+ "validation_files": "filelists/44k/val.txt",
30
+ "max_wav_value": 32768.0,
31
+ "sampling_rate": 44100,
32
+ "filter_length": 2048,
33
+ "hop_length": 512,
34
+ "win_length": 2048,
35
+ "n_mel_channels": 80,
36
+ "mel_fmin": 0.0,
37
+ "mel_fmax": 22050
38
+ },
39
+ "model": {
40
+ "inter_channels": 192,
41
+ "hidden_channels": 192,
42
+ "filter_channels": 768,
43
+ "n_heads": 2,
44
+ "n_layers": 6,
45
+ "kernel_size": 3,
46
+ "p_dropout": 0.1,
47
+ "resblock": "1",
48
+ "resblock_kernel_sizes": [
49
+ 3,
50
+ 7,
51
+ 11
52
+ ],
53
+ "resblock_dilation_sizes": [
54
+ [
55
+ 1,
56
+ 3,
57
+ 5
58
+ ],
59
+ [
60
+ 1,
61
+ 3,
62
+ 5
63
+ ],
64
+ [
65
+ 1,
66
+ 3,
67
+ 5
68
+ ]
69
+ ],
70
+ "upsample_rates": [
71
+ 8,
72
+ 8,
73
+ 2,
74
+ 2,
75
+ 2
76
+ ],
77
+ "upsample_initial_channel": 512,
78
+ "upsample_kernel_sizes": [
79
+ 16,
80
+ 16,
81
+ 4,
82
+ 4,
83
+ 4
84
+ ],
85
+ "n_layers_q": 3,
86
+ "use_spectral_norm": false,
87
+ "gin_channels": 256,
88
+ "ssl_dim": 256,
89
+ "n_speakers": 200
90
+ },
91
+ "spk": {
92
+ "emu": 0
93
+ }
94
+ }
configs_template/config_template.json ADDED
@@ -0,0 +1,66 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "train": {
3
+ "log_interval": 200,
4
+ "eval_interval": 800,
5
+ "seed": 1234,
6
+ "epochs": 10000,
7
+ "learning_rate": 0.0001,
8
+ "betas": [
9
+ 0.8,
10
+ 0.99
11
+ ],
12
+ "eps": 1e-09,
13
+ "batch_size": 6,
14
+ "fp16_run": false,
15
+ "lr_decay": 0.999875,
16
+ "segment_size": 10240,
17
+ "init_lr_ratio": 1,
18
+ "warmup_epochs": 0,
19
+ "c_mel": 45,
20
+ "c_kl": 1.0,
21
+ "use_sr": true,
22
+ "max_speclen": 512,
23
+ "port": "8001",
24
+ "keep_ckpts": 3,
25
+ "all_in_mem": false
26
+ },
27
+ "data": {
28
+ "training_files": "filelists/train.txt",
29
+ "validation_files": "filelists/val.txt",
30
+ "max_wav_value": 32768.0,
31
+ "sampling_rate": 44100,
32
+ "filter_length": 2048,
33
+ "hop_length": 512,
34
+ "win_length": 2048,
35
+ "n_mel_channels": 80,
36
+ "mel_fmin": 0.0,
37
+ "mel_fmax": 22050
38
+ },
39
+ "model": {
40
+ "inter_channels": 192,
41
+ "hidden_channels": 192,
42
+ "filter_channels": 768,
43
+ "n_heads": 2,
44
+ "n_layers": 6,
45
+ "kernel_size": 3,
46
+ "p_dropout": 0.1,
47
+ "resblock": "1",
48
+ "resblock_kernel_sizes": [3,7,11],
49
+ "resblock_dilation_sizes": [[1,3,5], [1,3,5], [1,3,5]],
50
+ "upsample_rates": [ 8, 8, 2, 2, 2],
51
+ "upsample_initial_channel": 512,
52
+ "upsample_kernel_sizes": [16,16, 4, 4, 4],
53
+ "n_layers_q": 3,
54
+ "use_spectral_norm": false,
55
+ "gin_channels": 256,
56
+ "ssl_dim": 256,
57
+ "n_speakers": 200
58
+ },
59
+ "spk": {
60
+ "nyaru": 0,
61
+ "huiyu": 1,
62
+ "nen": 2,
63
+ "paimon": 3,
64
+ "yunhao": 4
65
+ }
66
+ }
data_utils.py ADDED
@@ -0,0 +1,155 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import time
2
+ import os
3
+ import random
4
+ import numpy as np
5
+ import torch
6
+ import torch.utils.data
7
+
8
+ import modules.commons as commons
9
+ import utils
10
+ from modules.mel_processing import spectrogram_torch, spec_to_mel_torch
11
+ from utils import load_wav_to_torch, load_filepaths_and_text
12
+
13
+ # import h5py
14
+
15
+
16
+ """Multi speaker version"""
17
+
18
+
19
+ class TextAudioSpeakerLoader(torch.utils.data.Dataset):
20
+ """
21
+ 1) loads audio, speaker_id, text pairs
22
+ 2) normalizes text and converts them to sequences of integers
23
+ 3) computes spectrograms from audio files.
24
+ """
25
+
26
+ def __init__(self, audiopaths, hparams, all_in_mem: bool = False):
27
+ self.audiopaths = load_filepaths_and_text(audiopaths)
28
+ self.max_wav_value = hparams.data.max_wav_value
29
+ self.sampling_rate = hparams.data.sampling_rate
30
+ self.filter_length = hparams.data.filter_length
31
+ self.hop_length = hparams.data.hop_length
32
+ self.win_length = hparams.data.win_length
33
+ self.sampling_rate = hparams.data.sampling_rate
34
+ self.use_sr = hparams.train.use_sr
35
+ self.spec_len = hparams.train.max_speclen
36
+ self.spk_map = hparams.spk
37
+
38
+ random.seed(1234)
39
+ random.shuffle(self.audiopaths)
40
+
41
+ self.all_in_mem = all_in_mem
42
+ if self.all_in_mem:
43
+ self.cache = [self.get_audio(p[0]) for p in self.audiopaths]
44
+
45
+ def get_audio(self, filename):
46
+ filename = filename.replace("\\", "/")
47
+ audio, sampling_rate = load_wav_to_torch(filename)
48
+ if sampling_rate != self.sampling_rate:
49
+ raise ValueError("{} SR doesn't match target {} SR".format(
50
+ sampling_rate, self.sampling_rate))
51
+ audio_norm = audio / self.max_wav_value
52
+ audio_norm = audio_norm.unsqueeze(0)
53
+ spec_filename = filename.replace(".wav", ".spec.pt")
54
+
55
+ # Ideally, all data generated after Mar 25 should have .spec.pt
56
+ if os.path.exists(spec_filename):
57
+ spec = torch.load(spec_filename)
58
+ else:
59
+ spec = spectrogram_torch(audio_norm, self.filter_length,
60
+ self.sampling_rate, self.hop_length, self.win_length,
61
+ center=False)
62
+ spec = torch.squeeze(spec, 0)
63
+ torch.save(spec, spec_filename)
64
+
65
+ spk = filename.split("/")[-2]
66
+ spk = torch.LongTensor([self.spk_map[spk]])
67
+
68
+ f0 = np.load(filename + ".f0.npy")
69
+ f0, uv = utils.interpolate_f0(f0)
70
+ f0 = torch.FloatTensor(f0)
71
+ uv = torch.FloatTensor(uv)
72
+
73
+ c = torch.load(filename+ ".soft.pt")
74
+ c = utils.repeat_expand_2d(c.squeeze(0), f0.shape[0])
75
+
76
+
77
+ lmin = min(c.size(-1), spec.size(-1))
78
+ assert abs(c.size(-1) - spec.size(-1)) < 3, (c.size(-1), spec.size(-1), f0.shape, filename)
79
+ assert abs(audio_norm.shape[1]-lmin * self.hop_length) < 3 * self.hop_length
80
+ spec, c, f0, uv = spec[:, :lmin], c[:, :lmin], f0[:lmin], uv[:lmin]
81
+ audio_norm = audio_norm[:, :lmin * self.hop_length]
82
+
83
+ return c, f0, spec, audio_norm, spk, uv
84
+
85
+ def random_slice(self, c, f0, spec, audio_norm, spk, uv):
86
+ # if spec.shape[1] < 30:
87
+ # print("skip too short audio:", filename)
88
+ # return None
89
+ if spec.shape[1] > 800:
90
+ start = random.randint(0, spec.shape[1]-800)
91
+ end = start + 790
92
+ spec, c, f0, uv = spec[:, start:end], c[:, start:end], f0[start:end], uv[start:end]
93
+ audio_norm = audio_norm[:, start * self.hop_length : end * self.hop_length]
94
+
95
+ return c, f0, spec, audio_norm, spk, uv
96
+
97
+ def __getitem__(self, index):
98
+ if self.all_in_mem:
99
+ return self.random_slice(*self.cache[index])
100
+ else:
101
+ return self.random_slice(*self.get_audio(self.audiopaths[index][0]))
102
+
103
+ def __len__(self):
104
+ return len(self.audiopaths)
105
+
106
+
107
+ class TextAudioCollate:
108
+
109
+ def __call__(self, batch):
110
+ batch = [b for b in batch if b is not None]
111
+
112
+ input_lengths, ids_sorted_decreasing = torch.sort(
113
+ torch.LongTensor([x[0].shape[1] for x in batch]),
114
+ dim=0, descending=True)
115
+
116
+ max_c_len = max([x[0].size(1) for x in batch])
117
+ max_wav_len = max([x[3].size(1) for x in batch])
118
+
119
+ lengths = torch.LongTensor(len(batch))
120
+
121
+ c_padded = torch.FloatTensor(len(batch), batch[0][0].shape[0], max_c_len)
122
+ f0_padded = torch.FloatTensor(len(batch), max_c_len)
123
+ spec_padded = torch.FloatTensor(len(batch), batch[0][2].shape[0], max_c_len)
124
+ wav_padded = torch.FloatTensor(len(batch), 1, max_wav_len)
125
+ spkids = torch.LongTensor(len(batch), 1)
126
+ uv_padded = torch.FloatTensor(len(batch), max_c_len)
127
+
128
+ c_padded.zero_()
129
+ spec_padded.zero_()
130
+ f0_padded.zero_()
131
+ wav_padded.zero_()
132
+ uv_padded.zero_()
133
+
134
+ for i in range(len(ids_sorted_decreasing)):
135
+ row = batch[ids_sorted_decreasing[i]]
136
+
137
+ c = row[0]
138
+ c_padded[i, :, :c.size(1)] = c
139
+ lengths[i] = c.size(1)
140
+
141
+ f0 = row[1]
142
+ f0_padded[i, :f0.size(0)] = f0
143
+
144
+ spec = row[2]
145
+ spec_padded[i, :, :spec.size(1)] = spec
146
+
147
+ wav = row[3]
148
+ wav_padded[i, :, :wav.size(1)] = wav
149
+
150
+ spkids[i, 0] = row[4]
151
+
152
+ uv = row[5]
153
+ uv_padded[i, :uv.size(0)] = uv
154
+
155
+ return c_padded, f0_padded, spec_padded, wav_padded, spkids, lengths, uv_padded
dataset_raw/wav_structure.txt ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ 数据集准备
2
+
3
+ raw
4
+ ├───speaker0
5
+ │ ├───xxx1-xxx1.wav
6
+ │ ├───...
7
+ │ └───Lxx-0xx8.wav
8
+ └───speaker1
9
+ ├───xx2-0xxx2.wav
10
+ ├───...
11
+ └───xxx7-xxx007.wav
12
+
13
+ 此外还需要编辑config.json
14
+
15
+ "n_speakers": 10
16
+
17
+ "spk":{
18
+ "speaker0": 0,
19
+ "speaker1": 1,
20
+ }
filelists/test.txt ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ ./dataset/44k/taffy/000562.wav
2
+ ./dataset/44k/nyaru/000011.wav
3
+ ./dataset/44k/nyaru/000008.wav
4
+ ./dataset/44k/taffy/000563.wav
filelists/train.txt ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ./dataset/44k/taffy/000549.wav
2
+ ./dataset/44k/nyaru/000004.wav
3
+ ./dataset/44k/nyaru/000006.wav
4
+ ./dataset/44k/taffy/000551.wav
5
+ ./dataset/44k/nyaru/000009.wav
6
+ ./dataset/44k/taffy/000561.wav
7
+ ./dataset/44k/nyaru/000001.wav
8
+ ./dataset/44k/taffy/000553.wav
9
+ ./dataset/44k/nyaru/000002.wav
10
+ ./dataset/44k/taffy/000560.wav
11
+ ./dataset/44k/taffy/000557.wav
12
+ ./dataset/44k/nyaru/000005.wav
13
+ ./dataset/44k/taffy/000554.wav
14
+ ./dataset/44k/taffy/000550.wav
15
+ ./dataset/44k/taffy/000559.wav
filelists/val.txt ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ ./dataset/44k/nyaru/000003.wav
2
+ ./dataset/44k/nyaru/000007.wav
3
+ ./dataset/44k/taffy/000558.wav
4
+ ./dataset/44k/taffy/000556.wav
flask_api.py ADDED
@@ -0,0 +1,60 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import io
2
+ import logging
3
+
4
+ import soundfile
5
+ import torch
6
+ import torchaudio
7
+ from flask import Flask, request, send_file
8
+ from flask_cors import CORS
9
+
10
+ from inference.infer_tool import Svc, RealTimeVC
11
+
12
+ app = Flask(__name__)
13
+
14
+ CORS(app)
15
+
16
+ logging.getLogger('numba').setLevel(logging.WARNING)
17
+
18
+
19
+ @app.route("/voiceChangeModel", methods=["POST"])
20
+ def voice_change_model():
21
+ request_form = request.form
22
+ wave_file = request.files.get("sample", None)
23
+ # 变调信息
24
+ f_pitch_change = float(request_form.get("fPitchChange", 0))
25
+ # DAW所需的采样率
26
+ daw_sample = int(float(request_form.get("sampleRate", 0)))
27
+ speaker_id = int(float(request_form.get("sSpeakId", 0)))
28
+ # http获得wav文件并转换
29
+ input_wav_path = io.BytesIO(wave_file.read())
30
+
31
+ # 模型推理
32
+ if raw_infer:
33
+ # out_audio, out_sr = svc_model.infer(speaker_id, f_pitch_change, input_wav_path)
34
+ out_audio, out_sr = svc_model.infer(speaker_id, f_pitch_change, input_wav_path, cluster_infer_ratio=0,
35
+ auto_predict_f0=False, noice_scale=0.4, f0_filter=False)
36
+ tar_audio = torchaudio.functional.resample(out_audio, svc_model.target_sample, daw_sample)
37
+ else:
38
+ out_audio = svc.process(svc_model, speaker_id, f_pitch_change, input_wav_path, cluster_infer_ratio=0,
39
+ auto_predict_f0=False, noice_scale=0.4, f0_filter=False)
40
+ tar_audio = torchaudio.functional.resample(torch.from_numpy(out_audio), svc_model.target_sample, daw_sample)
41
+ # 返回音频
42
+ out_wav_path = io.BytesIO()
43
+ soundfile.write(out_wav_path, tar_audio.cpu().numpy(), daw_sample, format="wav")
44
+ out_wav_path.seek(0)
45
+ return send_file(out_wav_path, download_name="temp.wav", as_attachment=True)
46
+
47
+
48
+ if __name__ == '__main__':
49
+ # 启用则为直接切片合成,False为交叉淡化方式
50
+ # vst插件调整0.3-0.5s切片时间可以降低延迟,直接切片方法会有连接处爆音、交叉淡化会有轻微重叠声音
51
+ # 自行选择能接受的方法,或将vst最大切片时间调整为1s,此处设为Ture,延迟大音质稳定一些
52
+ raw_infer = True
53
+ # 每个模型和config是唯一对应的
54
+ model_name = "logs/32k/G_174000-Copy1.pth"
55
+ config_name = "configs/config.json"
56
+ cluster_model_path = "logs/44k/kmeans_10000.pt"
57
+ svc_model = Svc(model_name, config_name, cluster_model_path=cluster_model_path)
58
+ svc = RealTimeVC()
59
+ # 此处与vst插件对应,不建议更改
60
+ app.run(port=6842, host="0.0.0.0", debug=False, threaded=False)
flask_api_full_song.py ADDED
@@ -0,0 +1,55 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import io
2
+ import numpy as np
3
+ import soundfile
4
+ from flask import Flask, request, send_file
5
+
6
+ from inference import infer_tool
7
+ from inference import slicer
8
+
9
+ app = Flask(__name__)
10
+
11
+
12
+ @app.route("/wav2wav", methods=["POST"])
13
+ def wav2wav():
14
+ request_form = request.form
15
+ audio_path = request_form.get("audio_path", None) # wav文件地址
16
+ tran = int(float(request_form.get("tran", 0))) # 音调
17
+ spk = request_form.get("spk", 0) # 说话人(id或者name都可以,具体看你的config)
18
+ wav_format = request_form.get("wav_format", 'wav') # 范围文件格式
19
+ infer_tool.format_wav(audio_path)
20
+ chunks = slicer.cut(audio_path, db_thresh=-40)
21
+ audio_data, audio_sr = slicer.chunks2audio(audio_path, chunks)
22
+
23
+ audio = []
24
+ for (slice_tag, data) in audio_data:
25
+ print(f'#=====segment start, {round(len(data) / audio_sr, 3)}s======')
26
+
27
+ length = int(np.ceil(len(data) / audio_sr * svc_model.target_sample))
28
+ if slice_tag:
29
+ print('jump empty segment')
30
+ _audio = np.zeros(length)
31
+ else:
32
+ # padd
33
+ pad_len = int(audio_sr * 0.5)
34
+ data = np.concatenate([np.zeros([pad_len]), data, np.zeros([pad_len])])
35
+ raw_path = io.BytesIO()
36
+ soundfile.write(raw_path, data, audio_sr, format="wav")
37
+ raw_path.seek(0)
38
+ out_audio, out_sr = svc_model.infer(spk, tran, raw_path)
39
+ svc_model.clear_empty()
40
+ _audio = out_audio.cpu().numpy()
41
+ pad_len = int(svc_model.target_sample * 0.5)
42
+ _audio = _audio[pad_len:-pad_len]
43
+
44
+ audio.extend(list(infer_tool.pad_array(_audio, length)))
45
+ out_wav_path = io.BytesIO()
46
+ soundfile.write(out_wav_path, audio, svc_model.target_sample, format=wav_format)
47
+ out_wav_path.seek(0)
48
+ return send_file(out_wav_path, download_name=f"temp.{wav_format}", as_attachment=True)
49
+
50
+
51
+ if __name__ == '__main__':
52
+ model_name = "logs/44k/G_60000.pth" # 模型地址
53
+ config_name = "configs/config.json" # config地址
54
+ svc_model = infer_tool.Svc(model_name, config_name)
55
+ app.run(port=1145, host="0.0.0.0", debug=False, threaded=False)
hubert/__init__.py ADDED
File without changes
hubert/hubert_model.py ADDED
@@ -0,0 +1,222 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import copy
2
+ import random
3
+ from typing import Optional, Tuple
4
+
5
+ import torch
6
+ import torch.nn as nn
7
+ import torch.nn.functional as t_func
8
+ from torch.nn.modules.utils import consume_prefix_in_state_dict_if_present
9
+
10
+
11
+ class Hubert(nn.Module):
12
+ def __init__(self, num_label_embeddings: int = 100, mask: bool = True):
13
+ super().__init__()
14
+ self._mask = mask
15
+ self.feature_extractor = FeatureExtractor()
16
+ self.feature_projection = FeatureProjection()
17
+ self.positional_embedding = PositionalConvEmbedding()
18
+ self.norm = nn.LayerNorm(768)
19
+ self.dropout = nn.Dropout(0.1)
20
+ self.encoder = TransformerEncoder(
21
+ nn.TransformerEncoderLayer(
22
+ 768, 12, 3072, activation="gelu", batch_first=True
23
+ ),
24
+ 12,
25
+ )
26
+ self.proj = nn.Linear(768, 256)
27
+
28
+ self.masked_spec_embed = nn.Parameter(torch.FloatTensor(768).uniform_())
29
+ self.label_embedding = nn.Embedding(num_label_embeddings, 256)
30
+
31
+ def mask(self, x: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
32
+ mask = None
33
+ if self.training and self._mask:
34
+ mask = _compute_mask((x.size(0), x.size(1)), 0.8, 10, x.device, 2)
35
+ x[mask] = self.masked_spec_embed.to(x.dtype)
36
+ return x, mask
37
+
38
+ def encode(
39
+ self, x: torch.Tensor, layer: Optional[int] = None
40
+ ) -> Tuple[torch.Tensor, torch.Tensor]:
41
+ x = self.feature_extractor(x)
42
+ x = self.feature_projection(x.transpose(1, 2))
43
+ x, mask = self.mask(x)
44
+ x = x + self.positional_embedding(x)
45
+ x = self.dropout(self.norm(x))
46
+ x = self.encoder(x, output_layer=layer)
47
+ return x, mask
48
+
49
+ def logits(self, x: torch.Tensor) -> torch.Tensor:
50
+ logits = torch.cosine_similarity(
51
+ x.unsqueeze(2),
52
+ self.label_embedding.weight.unsqueeze(0).unsqueeze(0),
53
+ dim=-1,
54
+ )
55
+ return logits / 0.1
56
+
57
+ def forward(self, x: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
58
+ x, mask = self.encode(x)
59
+ x = self.proj(x)
60
+ logits = self.logits(x)
61
+ return logits, mask
62
+
63
+
64
+ class HubertSoft(Hubert):
65
+ def __init__(self):
66
+ super().__init__()
67
+
68
+ @torch.inference_mode()
69
+ def units(self, wav: torch.Tensor) -> torch.Tensor:
70
+ wav = t_func.pad(wav, ((400 - 320) // 2, (400 - 320) // 2))
71
+ x, _ = self.encode(wav)
72
+ return self.proj(x)
73
+
74
+
75
+ class FeatureExtractor(nn.Module):
76
+ def __init__(self):
77
+ super().__init__()
78
+ self.conv0 = nn.Conv1d(1, 512, 10, 5, bias=False)
79
+ self.norm0 = nn.GroupNorm(512, 512)
80
+ self.conv1 = nn.Conv1d(512, 512, 3, 2, bias=False)
81
+ self.conv2 = nn.Conv1d(512, 512, 3, 2, bias=False)
82
+ self.conv3 = nn.Conv1d(512, 512, 3, 2, bias=False)
83
+ self.conv4 = nn.Conv1d(512, 512, 3, 2, bias=False)
84
+ self.conv5 = nn.Conv1d(512, 512, 2, 2, bias=False)
85
+ self.conv6 = nn.Conv1d(512, 512, 2, 2, bias=False)
86
+
87
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
88
+ x = t_func.gelu(self.norm0(self.conv0(x)))
89
+ x = t_func.gelu(self.conv1(x))
90
+ x = t_func.gelu(self.conv2(x))
91
+ x = t_func.gelu(self.conv3(x))
92
+ x = t_func.gelu(self.conv4(x))
93
+ x = t_func.gelu(self.conv5(x))
94
+ x = t_func.gelu(self.conv6(x))
95
+ return x
96
+
97
+
98
+ class FeatureProjection(nn.Module):
99
+ def __init__(self):
100
+ super().__init__()
101
+ self.norm = nn.LayerNorm(512)
102
+ self.projection = nn.Linear(512, 768)
103
+ self.dropout = nn.Dropout(0.1)
104
+
105
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
106
+ x = self.norm(x)
107
+ x = self.projection(x)
108
+ x = self.dropout(x)
109
+ return x
110
+
111
+
112
+ class PositionalConvEmbedding(nn.Module):
113
+ def __init__(self):
114
+ super().__init__()
115
+ self.conv = nn.Conv1d(
116
+ 768,
117
+ 768,
118
+ kernel_size=128,
119
+ padding=128 // 2,
120
+ groups=16,
121
+ )
122
+ self.conv = nn.utils.weight_norm(self.conv, name="weight", dim=2)
123
+
124
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
125
+ x = self.conv(x.transpose(1, 2))
126
+ x = t_func.gelu(x[:, :, :-1])
127
+ return x.transpose(1, 2)
128
+
129
+
130
+ class TransformerEncoder(nn.Module):
131
+ def __init__(
132
+ self, encoder_layer: nn.TransformerEncoderLayer, num_layers: int
133
+ ) -> None:
134
+ super(TransformerEncoder, self).__init__()
135
+ self.layers = nn.ModuleList(
136
+ [copy.deepcopy(encoder_layer) for _ in range(num_layers)]
137
+ )
138
+ self.num_layers = num_layers
139
+
140
+ def forward(
141
+ self,
142
+ src: torch.Tensor,
143
+ mask: torch.Tensor = None,
144
+ src_key_padding_mask: torch.Tensor = None,
145
+ output_layer: Optional[int] = None,
146
+ ) -> torch.Tensor:
147
+ output = src
148
+ for layer in self.layers[:output_layer]:
149
+ output = layer(
150
+ output, src_mask=mask, src_key_padding_mask=src_key_padding_mask
151
+ )
152
+ return output
153
+
154
+
155
+ def _compute_mask(
156
+ shape: Tuple[int, int],
157
+ mask_prob: float,
158
+ mask_length: int,
159
+ device: torch.device,
160
+ min_masks: int = 0,
161
+ ) -> torch.Tensor:
162
+ batch_size, sequence_length = shape
163
+
164
+ if mask_length < 1:
165
+ raise ValueError("`mask_length` has to be bigger than 0.")
166
+
167
+ if mask_length > sequence_length:
168
+ raise ValueError(
169
+ f"`mask_length` has to be smaller than `sequence_length`, but got `mask_length`: {mask_length} and `sequence_length`: {sequence_length}`"
170
+ )
171
+
172
+ # compute number of masked spans in batch
173
+ num_masked_spans = int(mask_prob * sequence_length / mask_length + random.random())
174
+ num_masked_spans = max(num_masked_spans, min_masks)
175
+
176
+ # make sure num masked indices <= sequence_length
177
+ if num_masked_spans * mask_length > sequence_length:
178
+ num_masked_spans = sequence_length // mask_length
179
+
180
+ # SpecAugment mask to fill
181
+ mask = torch.zeros((batch_size, sequence_length), device=device, dtype=torch.bool)
182
+
183
+ # uniform distribution to sample from, make sure that offset samples are < sequence_length
184
+ uniform_dist = torch.ones(
185
+ (batch_size, sequence_length - (mask_length - 1)), device=device
186
+ )
187
+
188
+ # get random indices to mask
189
+ mask_indices = torch.multinomial(uniform_dist, num_masked_spans)
190
+
191
+ # expand masked indices to masked spans
192
+ mask_indices = (
193
+ mask_indices.unsqueeze(dim=-1)
194
+ .expand((batch_size, num_masked_spans, mask_length))
195
+ .reshape(batch_size, num_masked_spans * mask_length)
196
+ )
197
+ offsets = (
198
+ torch.arange(mask_length, device=device)[None, None, :]
199
+ .expand((batch_size, num_masked_spans, mask_length))
200
+ .reshape(batch_size, num_masked_spans * mask_length)
201
+ )
202
+ mask_idxs = mask_indices + offsets
203
+
204
+ # scatter indices to mask
205
+ mask = mask.scatter(1, mask_idxs, True)
206
+
207
+ return mask
208
+
209
+
210
+ def hubert_soft(
211
+ path: str,
212
+ ) -> HubertSoft:
213
+ r"""HuBERT-Soft from `"A Comparison of Discrete and Soft Speech Units for Improved Voice Conversion"`.
214
+ Args:
215
+ path (str): path of a pretrained model
216
+ """
217
+ hubert = HubertSoft()
218
+ checkpoint = torch.load(path)
219
+ consume_prefix_in_state_dict_if_present(checkpoint, "module.")
220
+ hubert.load_state_dict(checkpoint)
221
+ hubert.eval()
222
+ return hubert
hubert/hubert_model_onnx.py ADDED
@@ -0,0 +1,217 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import copy
2
+ import random
3
+ from typing import Optional, Tuple
4
+
5
+ import torch
6
+ import torch.nn as nn
7
+ import torch.nn.functional as t_func
8
+ from torch.nn.modules.utils import consume_prefix_in_state_dict_if_present
9
+
10
+
11
+ class Hubert(nn.Module):
12
+ def __init__(self, num_label_embeddings: int = 100, mask: bool = True):
13
+ super().__init__()
14
+ self._mask = mask
15
+ self.feature_extractor = FeatureExtractor()
16
+ self.feature_projection = FeatureProjection()
17
+ self.positional_embedding = PositionalConvEmbedding()
18
+ self.norm = nn.LayerNorm(768)
19
+ self.dropout = nn.Dropout(0.1)
20
+ self.encoder = TransformerEncoder(
21
+ nn.TransformerEncoderLayer(
22
+ 768, 12, 3072, activation="gelu", batch_first=True
23
+ ),
24
+ 12,
25
+ )
26
+ self.proj = nn.Linear(768, 256)
27
+
28
+ self.masked_spec_embed = nn.Parameter(torch.FloatTensor(768).uniform_())
29
+ self.label_embedding = nn.Embedding(num_label_embeddings, 256)
30
+
31
+ def mask(self, x: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
32
+ mask = None
33
+ if self.training and self._mask:
34
+ mask = _compute_mask((x.size(0), x.size(1)), 0.8, 10, x.device, 2)
35
+ x[mask] = self.masked_spec_embed.to(x.dtype)
36
+ return x, mask
37
+
38
+ def encode(
39
+ self, x: torch.Tensor, layer: Optional[int] = None
40
+ ) -> Tuple[torch.Tensor, torch.Tensor]:
41
+ x = self.feature_extractor(x)
42
+ x = self.feature_projection(x.transpose(1, 2))
43
+ x, mask = self.mask(x)
44
+ x = x + self.positional_embedding(x)
45
+ x = self.dropout(self.norm(x))
46
+ x = self.encoder(x, output_layer=layer)
47
+ return x, mask
48
+
49
+ def logits(self, x: torch.Tensor) -> torch.Tensor:
50
+ logits = torch.cosine_similarity(
51
+ x.unsqueeze(2),
52
+ self.label_embedding.weight.unsqueeze(0).unsqueeze(0),
53
+ dim=-1,
54
+ )
55
+ return logits / 0.1
56
+
57
+
58
+ class HubertSoft(Hubert):
59
+ def __init__(self):
60
+ super().__init__()
61
+
62
+ def units(self, wav: torch.Tensor) -> torch.Tensor:
63
+ wav = t_func.pad(wav, ((400 - 320) // 2, (400 - 320) // 2))
64
+ x, _ = self.encode(wav)
65
+ return self.proj(x)
66
+
67
+ def forward(self, x):
68
+ return self.units(x)
69
+
70
+ class FeatureExtractor(nn.Module):
71
+ def __init__(self):
72
+ super().__init__()
73
+ self.conv0 = nn.Conv1d(1, 512, 10, 5, bias=False)
74
+ self.norm0 = nn.GroupNorm(512, 512)
75
+ self.conv1 = nn.Conv1d(512, 512, 3, 2, bias=False)
76
+ self.conv2 = nn.Conv1d(512, 512, 3, 2, bias=False)
77
+ self.conv3 = nn.Conv1d(512, 512, 3, 2, bias=False)
78
+ self.conv4 = nn.Conv1d(512, 512, 3, 2, bias=False)
79
+ self.conv5 = nn.Conv1d(512, 512, 2, 2, bias=False)
80
+ self.conv6 = nn.Conv1d(512, 512, 2, 2, bias=False)
81
+
82
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
83
+ x = t_func.gelu(self.norm0(self.conv0(x)))
84
+ x = t_func.gelu(self.conv1(x))
85
+ x = t_func.gelu(self.conv2(x))
86
+ x = t_func.gelu(self.conv3(x))
87
+ x = t_func.gelu(self.conv4(x))
88
+ x = t_func.gelu(self.conv5(x))
89
+ x = t_func.gelu(self.conv6(x))
90
+ return x
91
+
92
+
93
+ class FeatureProjection(nn.Module):
94
+ def __init__(self):
95
+ super().__init__()
96
+ self.norm = nn.LayerNorm(512)
97
+ self.projection = nn.Linear(512, 768)
98
+ self.dropout = nn.Dropout(0.1)
99
+
100
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
101
+ x = self.norm(x)
102
+ x = self.projection(x)
103
+ x = self.dropout(x)
104
+ return x
105
+
106
+
107
+ class PositionalConvEmbedding(nn.Module):
108
+ def __init__(self):
109
+ super().__init__()
110
+ self.conv = nn.Conv1d(
111
+ 768,
112
+ 768,
113
+ kernel_size=128,
114
+ padding=128 // 2,
115
+ groups=16,
116
+ )
117
+ self.conv = nn.utils.weight_norm(self.conv, name="weight", dim=2)
118
+
119
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
120
+ x = self.conv(x.transpose(1, 2))
121
+ x = t_func.gelu(x[:, :, :-1])
122
+ return x.transpose(1, 2)
123
+
124
+
125
+ class TransformerEncoder(nn.Module):
126
+ def __init__(
127
+ self, encoder_layer: nn.TransformerEncoderLayer, num_layers: int
128
+ ) -> None:
129
+ super(TransformerEncoder, self).__init__()
130
+ self.layers = nn.ModuleList(
131
+ [copy.deepcopy(encoder_layer) for _ in range(num_layers)]
132
+ )
133
+ self.num_layers = num_layers
134
+
135
+ def forward(
136
+ self,
137
+ src: torch.Tensor,
138
+ mask: torch.Tensor = None,
139
+ src_key_padding_mask: torch.Tensor = None,
140
+ output_layer: Optional[int] = None,
141
+ ) -> torch.Tensor:
142
+ output = src
143
+ for layer in self.layers[:output_layer]:
144
+ output = layer(
145
+ output, src_mask=mask, src_key_padding_mask=src_key_padding_mask
146
+ )
147
+ return output
148
+
149
+
150
+ def _compute_mask(
151
+ shape: Tuple[int, int],
152
+ mask_prob: float,
153
+ mask_length: int,
154
+ device: torch.device,
155
+ min_masks: int = 0,
156
+ ) -> torch.Tensor:
157
+ batch_size, sequence_length = shape
158
+
159
+ if mask_length < 1:
160
+ raise ValueError("`mask_length` has to be bigger than 0.")
161
+
162
+ if mask_length > sequence_length:
163
+ raise ValueError(
164
+ f"`mask_length` has to be smaller than `sequence_length`, but got `mask_length`: {mask_length} and `sequence_length`: {sequence_length}`"
165
+ )
166
+
167
+ # compute number of masked spans in batch
168
+ num_masked_spans = int(mask_prob * sequence_length / mask_length + random.random())
169
+ num_masked_spans = max(num_masked_spans, min_masks)
170
+
171
+ # make sure num masked indices <= sequence_length
172
+ if num_masked_spans * mask_length > sequence_length:
173
+ num_masked_spans = sequence_length // mask_length
174
+
175
+ # SpecAugment mask to fill
176
+ mask = torch.zeros((batch_size, sequence_length), device=device, dtype=torch.bool)
177
+
178
+ # uniform distribution to sample from, make sure that offset samples are < sequence_length
179
+ uniform_dist = torch.ones(
180
+ (batch_size, sequence_length - (mask_length - 1)), device=device
181
+ )
182
+
183
+ # get random indices to mask
184
+ mask_indices = torch.multinomial(uniform_dist, num_masked_spans)
185
+
186
+ # expand masked indices to masked spans
187
+ mask_indices = (
188
+ mask_indices.unsqueeze(dim=-1)
189
+ .expand((batch_size, num_masked_spans, mask_length))
190
+ .reshape(batch_size, num_masked_spans * mask_length)
191
+ )
192
+ offsets = (
193
+ torch.arange(mask_length, device=device)[None, None, :]
194
+ .expand((batch_size, num_masked_spans, mask_length))
195
+ .reshape(batch_size, num_masked_spans * mask_length)
196
+ )
197
+ mask_idxs = mask_indices + offsets
198
+
199
+ # scatter indices to mask
200
+ mask = mask.scatter(1, mask_idxs, True)
201
+
202
+ return mask
203
+
204
+
205
+ def hubert_soft(
206
+ path: str,
207
+ ) -> HubertSoft:
208
+ r"""HuBERT-Soft from `"A Comparison of Discrete and Soft Speech Units for Improved Voice Conversion"`.
209
+ Args:
210
+ path (str): path of a pretrained model
211
+ """
212
+ hubert = HubertSoft()
213
+ checkpoint = torch.load(path)
214
+ consume_prefix_in_state_dict_if_present(checkpoint, "module.")
215
+ hubert.load_state_dict(checkpoint)
216
+ hubert.eval()
217
+ return hubert
hubert/put_hubert_ckpt_here ADDED
File without changes
inference/__init__.py ADDED
File without changes
inference/infer_tool.py ADDED
@@ -0,0 +1,340 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import hashlib
2
+ import io
3
+ import json
4
+ import logging
5
+ import os
6
+ import time
7
+ from pathlib import Path
8
+ from inference import slicer
9
+
10
+ import librosa
11
+ import numpy as np
12
+ # import onnxruntime
13
+ import parselmouth
14
+ import soundfile
15
+ import torch
16
+ import torchaudio
17
+
18
+ import cluster
19
+ from hubert import hubert_model
20
+ import utils
21
+ from models import SynthesizerTrn
22
+
23
+ logging.getLogger('matplotlib').setLevel(logging.WARNING)
24
+
25
+
26
+ def read_temp(file_name):
27
+ if not os.path.exists(file_name):
28
+ with open(file_name, "w") as f:
29
+ f.write(json.dumps({"info": "temp_dict"}))
30
+ return {}
31
+ else:
32
+ try:
33
+ with open(file_name, "r") as f:
34
+ data = f.read()
35
+ data_dict = json.loads(data)
36
+ if os.path.getsize(file_name) > 50 * 1024 * 1024:
37
+ f_name = file_name.replace("\\", "/").split("/")[-1]
38
+ print(f"clean {f_name}")
39
+ for wav_hash in list(data_dict.keys()):
40
+ if int(time.time()) - int(data_dict[wav_hash]["time"]) > 14 * 24 * 3600:
41
+ del data_dict[wav_hash]
42
+ except Exception as e:
43
+ print(e)
44
+ print(f"{file_name} error,auto rebuild file")
45
+ data_dict = {"info": "temp_dict"}
46
+ return data_dict
47
+
48
+
49
+ def write_temp(file_name, data):
50
+ with open(file_name, "w") as f:
51
+ f.write(json.dumps(data))
52
+
53
+
54
+ def timeit(func):
55
+ def run(*args, **kwargs):
56
+ t = time.time()
57
+ res = func(*args, **kwargs)
58
+ print('executing \'%s\' costed %.3fs' % (func.__name__, time.time() - t))
59
+ return res
60
+
61
+ return run
62
+
63
+
64
+ def format_wav(audio_path):
65
+ if Path(audio_path).suffix == '.wav':
66
+ return
67
+ raw_audio, raw_sample_rate = librosa.load(audio_path, mono=True, sr=None)
68
+ soundfile.write(Path(audio_path).with_suffix(".wav"), raw_audio, raw_sample_rate)
69
+
70
+
71
+ def get_end_file(dir_path, end):
72
+ file_lists = []
73
+ for root, dirs, files in os.walk(dir_path):
74
+ files = [f for f in files if f[0] != '.']
75
+ dirs[:] = [d for d in dirs if d[0] != '.']
76
+ for f_file in files:
77
+ if f_file.endswith(end):
78
+ file_lists.append(os.path.join(root, f_file).replace("\\", "/"))
79
+ return file_lists
80
+
81
+
82
+ def get_md5(content):
83
+ return hashlib.new("md5", content).hexdigest()
84
+
85
+ def fill_a_to_b(a, b):
86
+ if len(a) < len(b):
87
+ for _ in range(0, len(b) - len(a)):
88
+ a.append(a[0])
89
+
90
+ def mkdir(paths: list):
91
+ for path in paths:
92
+ if not os.path.exists(path):
93
+ os.mkdir(path)
94
+
95
+ def pad_array(arr, target_length):
96
+ current_length = arr.shape[0]
97
+ if current_length >= target_length:
98
+ return arr
99
+ else:
100
+ pad_width = target_length - current_length
101
+ pad_left = pad_width // 2
102
+ pad_right = pad_width - pad_left
103
+ padded_arr = np.pad(arr, (pad_left, pad_right), 'constant', constant_values=(0, 0))
104
+ return padded_arr
105
+
106
+ def split_list_by_n(list_collection, n, pre=0):
107
+ for i in range(0, len(list_collection), n):
108
+ yield list_collection[i-pre if i-pre>=0 else i: i + n]
109
+
110
+
111
+ class F0FilterException(Exception):
112
+ pass
113
+
114
+ class Svc(object):
115
+ def __init__(self, net_g_path, config_path,
116
+ device=None,
117
+ cluster_model_path="logs/44k/kmeans_10000.pt",
118
+ nsf_hifigan_enhance = False
119
+ ):
120
+ self.net_g_path = net_g_path
121
+ if device is None:
122
+ self.dev = torch.device("cuda" if torch.cuda.is_available() else "cpu")
123
+ else:
124
+ self.dev = torch.device(device)
125
+ self.net_g_ms = None
126
+ self.hps_ms = utils.get_hparams_from_file(config_path)
127
+ self.target_sample = self.hps_ms.data.sampling_rate
128
+ self.hop_size = self.hps_ms.data.hop_length
129
+ self.spk2id = self.hps_ms.spk
130
+ self.nsf_hifigan_enhance = nsf_hifigan_enhance
131
+ # 加载hubert
132
+ self.hubert_model = utils.get_hubert_model().to(self.dev)
133
+ self.load_model()
134
+ if os.path.exists(cluster_model_path):
135
+ self.cluster_model = cluster.get_cluster_model(cluster_model_path)
136
+ if self.nsf_hifigan_enhance:
137
+ from modules.enhancer import Enhancer
138
+ self.enhancer = Enhancer('nsf-hifigan', 'pretrain/nsf_hifigan/model',device=self.dev)
139
+
140
+ def load_model(self):
141
+ # 获取模型配置
142
+ self.net_g_ms = SynthesizerTrn(
143
+ self.hps_ms.data.filter_length // 2 + 1,
144
+ self.hps_ms.train.segment_size // self.hps_ms.data.hop_length,
145
+ **self.hps_ms.model)
146
+ _ = utils.load_checkpoint(self.net_g_path, self.net_g_ms, None)
147
+ if "half" in self.net_g_path and torch.cuda.is_available():
148
+ _ = self.net_g_ms.half().eval().to(self.dev)
149
+ else:
150
+ _ = self.net_g_ms.eval().to(self.dev)
151
+
152
+
153
+
154
+ def get_unit_f0(self, in_path, tran, cluster_infer_ratio, speaker, f0_filter ,F0_mean_pooling):
155
+
156
+ wav, sr = librosa.load(in_path, sr=self.target_sample)
157
+
158
+ if F0_mean_pooling == True:
159
+ f0, uv = utils.compute_f0_uv_torchcrepe(torch.FloatTensor(wav), sampling_rate=self.target_sample, hop_length=self.hop_size,device=self.dev)
160
+ if f0_filter and sum(f0) == 0:
161
+ raise F0FilterException("未检测到人声")
162
+ f0 = torch.FloatTensor(list(f0))
163
+ uv = torch.FloatTensor(list(uv))
164
+ if F0_mean_pooling == False:
165
+ f0 = utils.compute_f0_parselmouth(wav, sampling_rate=self.target_sample, hop_length=self.hop_size)
166
+ if f0_filter and sum(f0) == 0:
167
+ raise F0FilterException("未检测到人声")
168
+ f0, uv = utils.interpolate_f0(f0)
169
+ f0 = torch.FloatTensor(f0)
170
+ uv = torch.FloatTensor(uv)
171
+
172
+ f0 = f0 * 2 ** (tran / 12)
173
+ f0 = f0.unsqueeze(0).to(self.dev)
174
+ uv = uv.unsqueeze(0).to(self.dev)
175
+
176
+ wav16k = librosa.resample(wav, orig_sr=self.target_sample, target_sr=16000)
177
+ wav16k = torch.from_numpy(wav16k).to(self.dev)
178
+ c = utils.get_hubert_content(self.hubert_model, wav_16k_tensor=wav16k)
179
+ c = utils.repeat_expand_2d(c.squeeze(0), f0.shape[1])
180
+
181
+ if cluster_infer_ratio !=0:
182
+ cluster_c = cluster.get_cluster_center_result(self.cluster_model, c.cpu().numpy().T, speaker).T
183
+ cluster_c = torch.FloatTensor(cluster_c).to(self.dev)
184
+ c = cluster_infer_ratio * cluster_c + (1 - cluster_infer_ratio) * c
185
+
186
+ c = c.unsqueeze(0)
187
+ return c, f0, uv
188
+
189
+ def infer(self, speaker, tran, raw_path,
190
+ cluster_infer_ratio=0,
191
+ auto_predict_f0=False,
192
+ noice_scale=0.4,
193
+ f0_filter=False,
194
+ F0_mean_pooling=False,
195
+ enhancer_adaptive_key = 0
196
+ ):
197
+
198
+ speaker_id = self.spk2id.__dict__.get(speaker)
199
+ if not speaker_id and type(speaker) is int:
200
+ if len(self.spk2id.__dict__) >= speaker:
201
+ speaker_id = speaker
202
+ sid = torch.LongTensor([int(speaker_id)]).to(self.dev).unsqueeze(0)
203
+ c, f0, uv = self.get_unit_f0(raw_path, tran, cluster_infer_ratio, speaker, f0_filter,F0_mean_pooling)
204
+ if "half" in self.net_g_path and torch.cuda.is_available():
205
+ c = c.half()
206
+ with torch.no_grad():
207
+ start = time.time()
208
+ audio = self.net_g_ms.infer(c, f0=f0, g=sid, uv=uv, predict_f0=auto_predict_f0, noice_scale=noice_scale)[0,0].data.float()
209
+ if self.nsf_hifigan_enhance:
210
+ audio, _ = self.enhancer.enhance(
211
+ audio[None,:],
212
+ self.target_sample,
213
+ f0[:,:,None],
214
+ self.hps_ms.data.hop_length,
215
+ adaptive_key = enhancer_adaptive_key)
216
+ use_time = time.time() - start
217
+ print("vits use time:{}".format(use_time))
218
+ return audio, audio.shape[-1]
219
+
220
+ def clear_empty(self):
221
+ # 清理显存
222
+ torch.cuda.empty_cache()
223
+
224
+ def slice_inference(self,
225
+ raw_audio_path,
226
+ spk,
227
+ tran,
228
+ slice_db,
229
+ cluster_infer_ratio,
230
+ auto_predict_f0,
231
+ noice_scale,
232
+ pad_seconds=0.5,
233
+ clip_seconds=0,
234
+ lg_num=0,
235
+ lgr_num =0.75,
236
+ F0_mean_pooling = False,
237
+ enhancer_adaptive_key = 0
238
+ ):
239
+ wav_path = raw_audio_path
240
+ chunks = slicer.cut(wav_path, db_thresh=slice_db)
241
+ audio_data, audio_sr = slicer.chunks2audio(wav_path, chunks)
242
+ per_size = int(clip_seconds*audio_sr)
243
+ lg_size = int(lg_num*audio_sr)
244
+ lg_size_r = int(lg_size*lgr_num)
245
+ lg_size_c_l = (lg_size-lg_size_r)//2
246
+ lg_size_c_r = lg_size-lg_size_r-lg_size_c_l
247
+ lg = np.linspace(0,1,lg_size_r) if lg_size!=0 else 0
248
+
249
+ audio = []
250
+ for (slice_tag, data) in audio_data:
251
+ print(f'#=====segment start, {round(len(data) / audio_sr, 3)}s======')
252
+ # padd
253
+ length = int(np.ceil(len(data) / audio_sr * self.target_sample))
254
+ if slice_tag:
255
+ print('jump empty segment')
256
+ _audio = np.zeros(length)
257
+ audio.extend(list(pad_array(_audio, length)))
258
+ continue
259
+ if per_size != 0:
260
+ datas = split_list_by_n(data, per_size,lg_size)
261
+ else:
262
+ datas = [data]
263
+ for k,dat in enumerate(datas):
264
+ per_length = int(np.ceil(len(dat) / audio_sr * self.target_sample)) if clip_seconds!=0 else length
265
+ if clip_seconds!=0: print(f'###=====segment clip start, {round(len(dat) / audio_sr, 3)}s======')
266
+ # padd
267
+ pad_len = int(audio_sr * pad_seconds)
268
+ dat = np.concatenate([np.zeros([pad_len]), dat, np.zeros([pad_len])])
269
+ raw_path = io.BytesIO()
270
+ soundfile.write(raw_path, dat, audio_sr, format="wav")
271
+ raw_path.seek(0)
272
+ out_audio, out_sr = self.infer(spk, tran, raw_path,
273
+ cluster_infer_ratio=cluster_infer_ratio,
274
+ auto_predict_f0=auto_predict_f0,
275
+ noice_scale=noice_scale,
276
+ F0_mean_pooling = F0_mean_pooling,
277
+ enhancer_adaptive_key = enhancer_adaptive_key
278
+ )
279
+ _audio = out_audio.cpu().numpy()
280
+ pad_len = int(self.target_sample * pad_seconds)
281
+ _audio = _audio[pad_len:-pad_len]
282
+ _audio = pad_array(_audio, per_length)
283
+ if lg_size!=0 and k!=0:
284
+ lg1 = audio[-(lg_size_r+lg_size_c_r):-lg_size_c_r] if lgr_num != 1 else audio[-lg_size:]
285
+ lg2 = _audio[lg_size_c_l:lg_size_c_l+lg_size_r] if lgr_num != 1 else _audio[0:lg_size]
286
+ lg_pre = lg1*(1-lg)+lg2*lg
287
+ audio = audio[0:-(lg_size_r+lg_size_c_r)] if lgr_num != 1 else audio[0:-lg_size]
288
+ audio.extend(lg_pre)
289
+ _audio = _audio[lg_size_c_l+lg_size_r:] if lgr_num != 1 else _audio[lg_size:]
290
+ audio.extend(list(_audio))
291
+ return np.array(audio)
292
+
293
+ class RealTimeVC:
294
+ def __init__(self):
295
+ self.last_chunk = None
296
+ self.last_o = None
297
+ self.chunk_len = 16000 # 区块长度
298
+ self.pre_len = 3840 # 交叉淡化长度,640的倍数
299
+
300
+ """输入输出都是1维numpy 音频波形数组"""
301
+
302
+ def process(self, svc_model, speaker_id, f_pitch_change, input_wav_path,
303
+ cluster_infer_ratio=0,
304
+ auto_predict_f0=False,
305
+ noice_scale=0.4,
306
+ f0_filter=False):
307
+
308
+ import maad
309
+ audio, sr = torchaudio.load(input_wav_path)
310
+ audio = audio.cpu().numpy()[0]
311
+ temp_wav = io.BytesIO()
312
+ if self.last_chunk is None:
313
+ input_wav_path.seek(0)
314
+
315
+ audio, sr = svc_model.infer(speaker_id, f_pitch_change, input_wav_path,
316
+ cluster_infer_ratio=cluster_infer_ratio,
317
+ auto_predict_f0=auto_predict_f0,
318
+ noice_scale=noice_scale,
319
+ f0_filter=f0_filter)
320
+
321
+ audio = audio.cpu().numpy()
322
+ self.last_chunk = audio[-self.pre_len:]
323
+ self.last_o = audio
324
+ return audio[-self.chunk_len:]
325
+ else:
326
+ audio = np.concatenate([self.last_chunk, audio])
327
+ soundfile.write(temp_wav, audio, sr, format="wav")
328
+ temp_wav.seek(0)
329
+
330
+ audio, sr = svc_model.infer(speaker_id, f_pitch_change, temp_wav,
331
+ cluster_infer_ratio=cluster_infer_ratio,
332
+ auto_predict_f0=auto_predict_f0,
333
+ noice_scale=noice_scale,
334
+ f0_filter=f0_filter)
335
+
336
+ audio = audio.cpu().numpy()
337
+ ret = maad.util.crossfade(self.last_o, audio, self.pre_len)
338
+ self.last_chunk = audio[-self.pre_len:]
339
+ self.last_o = audio
340
+ return ret[self.chunk_len:2 * self.chunk_len]
inference/infer_tool_grad.py ADDED
@@ -0,0 +1,160 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import hashlib
2
+ import json
3
+ import logging
4
+ import os
5
+ import time
6
+ from pathlib import Path
7
+ import io
8
+ import librosa
9
+ import maad
10
+ import numpy as np
11
+ from inference import slicer
12
+ import parselmouth
13
+ import soundfile
14
+ import torch
15
+ import torchaudio
16
+
17
+ from hubert import hubert_model
18
+ import utils
19
+ from models import SynthesizerTrn
20
+ logging.getLogger('numba').setLevel(logging.WARNING)
21
+ logging.getLogger('matplotlib').setLevel(logging.WARNING)
22
+
23
+ def resize2d_f0(x, target_len):
24
+ source = np.array(x)
25
+ source[source < 0.001] = np.nan
26
+ target = np.interp(np.arange(0, len(source) * target_len, len(source)) / target_len, np.arange(0, len(source)),
27
+ source)
28
+ res = np.nan_to_num(target)
29
+ return res
30
+
31
+ def get_f0(x, p_len,f0_up_key=0):
32
+
33
+ time_step = 160 / 16000 * 1000
34
+ f0_min = 50
35
+ f0_max = 1100
36
+ f0_mel_min = 1127 * np.log(1 + f0_min / 700)
37
+ f0_mel_max = 1127 * np.log(1 + f0_max / 700)
38
+
39
+ f0 = parselmouth.Sound(x, 16000).to_pitch_ac(
40
+ time_step=time_step / 1000, voicing_threshold=0.6,
41
+ pitch_floor=f0_min, pitch_ceiling=f0_max).selected_array['frequency']
42
+
43
+ pad_size=(p_len - len(f0) + 1) // 2
44
+ if(pad_size>0 or p_len - len(f0) - pad_size>0):
45
+ f0 = np.pad(f0,[[pad_size,p_len - len(f0) - pad_size]], mode='constant')
46
+
47
+ f0 *= pow(2, f0_up_key / 12)
48
+ f0_mel = 1127 * np.log(1 + f0 / 700)
49
+ f0_mel[f0_mel > 0] = (f0_mel[f0_mel > 0] - f0_mel_min) * 254 / (f0_mel_max - f0_mel_min) + 1
50
+ f0_mel[f0_mel <= 1] = 1
51
+ f0_mel[f0_mel > 255] = 255
52
+ f0_coarse = np.rint(f0_mel).astype(np.int)
53
+ return f0_coarse, f0
54
+
55
+ def clean_pitch(input_pitch):
56
+ num_nan = np.sum(input_pitch == 1)
57
+ if num_nan / len(input_pitch) > 0.9:
58
+ input_pitch[input_pitch != 1] = 1
59
+ return input_pitch
60
+
61
+
62
+ def plt_pitch(input_pitch):
63
+ input_pitch = input_pitch.astype(float)
64
+ input_pitch[input_pitch == 1] = np.nan
65
+ return input_pitch
66
+
67
+
68
+ def f0_to_pitch(ff):
69
+ f0_pitch = 69 + 12 * np.log2(ff / 440)
70
+ return f0_pitch
71
+
72
+
73
+ def fill_a_to_b(a, b):
74
+ if len(a) < len(b):
75
+ for _ in range(0, len(b) - len(a)):
76
+ a.append(a[0])
77
+
78
+
79
+ def mkdir(paths: list):
80
+ for path in paths:
81
+ if not os.path.exists(path):
82
+ os.mkdir(path)
83
+
84
+
85
+ class VitsSvc(object):
86
+ def __init__(self):
87
+ self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
88
+ self.SVCVITS = None
89
+ self.hps = None
90
+ self.speakers = None
91
+ self.hubert_soft = utils.get_hubert_model()
92
+
93
+ def set_device(self, device):
94
+ self.device = torch.device(device)
95
+ self.hubert_soft.to(self.device)
96
+ if self.SVCVITS != None:
97
+ self.SVCVITS.to(self.device)
98
+
99
+ def loadCheckpoint(self, path):
100
+ self.hps = utils.get_hparams_from_file(f"checkpoints/{path}/config.json")
101
+ self.SVCVITS = SynthesizerTrn(
102
+ self.hps.data.filter_length // 2 + 1,
103
+ self.hps.train.segment_size // self.hps.data.hop_length,
104
+ **self.hps.model)
105
+ _ = utils.load_checkpoint(f"checkpoints/{path}/model.pth", self.SVCVITS, None)
106
+ _ = self.SVCVITS.eval().to(self.device)
107
+ self.speakers = self.hps.spk
108
+
109
+ def get_units(self, source, sr):
110
+ source = source.unsqueeze(0).to(self.device)
111
+ with torch.inference_mode():
112
+ units = self.hubert_soft.units(source)
113
+ return units
114
+
115
+
116
+ def get_unit_pitch(self, in_path, tran):
117
+ source, sr = torchaudio.load(in_path)
118
+ source = torchaudio.functional.resample(source, sr, 16000)
119
+ if len(source.shape) == 2 and source.shape[1] >= 2:
120
+ source = torch.mean(source, dim=0).unsqueeze(0)
121
+ soft = self.get_units(source, sr).squeeze(0).cpu().numpy()
122
+ f0_coarse, f0 = get_f0(source.cpu().numpy()[0], soft.shape[0]*2, tran)
123
+ return soft, f0
124
+
125
+ def infer(self, speaker_id, tran, raw_path):
126
+ speaker_id = self.speakers[speaker_id]
127
+ sid = torch.LongTensor([int(speaker_id)]).to(self.device).unsqueeze(0)
128
+ soft, pitch = self.get_unit_pitch(raw_path, tran)
129
+ f0 = torch.FloatTensor(clean_pitch(pitch)).unsqueeze(0).to(self.device)
130
+ stn_tst = torch.FloatTensor(soft)
131
+ with torch.no_grad():
132
+ x_tst = stn_tst.unsqueeze(0).to(self.device)
133
+ x_tst = torch.repeat_interleave(x_tst, repeats=2, dim=1).transpose(1, 2)
134
+ audio = self.SVCVITS.infer(x_tst, f0=f0, g=sid)[0,0].data.float()
135
+ return audio, audio.shape[-1]
136
+
137
+ def inference(self,srcaudio,chara,tran,slice_db):
138
+ sampling_rate, audio = srcaudio
139
+ audio = (audio / np.iinfo(audio.dtype).max).astype(np.float32)
140
+ if len(audio.shape) > 1:
141
+ audio = librosa.to_mono(audio.transpose(1, 0))
142
+ if sampling_rate != 16000:
143
+ audio = librosa.resample(audio, orig_sr=sampling_rate, target_sr=16000)
144
+ soundfile.write("tmpwav.wav", audio, 16000, format="wav")
145
+ chunks = slicer.cut("tmpwav.wav", db_thresh=slice_db)
146
+ audio_data, audio_sr = slicer.chunks2audio("tmpwav.wav", chunks)
147
+ audio = []
148
+ for (slice_tag, data) in audio_data:
149
+ length = int(np.ceil(len(data) / audio_sr * self.hps.data.sampling_rate))
150
+ raw_path = io.BytesIO()
151
+ soundfile.write(raw_path, data, audio_sr, format="wav")
152
+ raw_path.seek(0)
153
+ if slice_tag:
154
+ _audio = np.zeros(length)
155
+ else:
156
+ out_audio, out_sr = self.infer(chara, tran, raw_path)
157
+ _audio = out_audio.cpu().numpy()
158
+ audio.extend(list(_audio))
159
+ audio = (np.array(audio) * 32768.0).astype('int16')
160
+ return (self.hps.data.sampling_rate,audio)
inference/slicer.py ADDED
@@ -0,0 +1,142 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import librosa
2
+ import torch
3
+ import torchaudio
4
+
5
+
6
+ class Slicer:
7
+ def __init__(self,
8
+ sr: int,
9
+ threshold: float = -40.,
10
+ min_length: int = 5000,
11
+ min_interval: int = 300,
12
+ hop_size: int = 20,
13
+ max_sil_kept: int = 5000):
14
+ if not min_length >= min_interval >= hop_size:
15
+ raise ValueError('The following condition must be satisfied: min_length >= min_interval >= hop_size')
16
+ if not max_sil_kept >= hop_size:
17
+ raise ValueError('The following condition must be satisfied: max_sil_kept >= hop_size')
18
+ min_interval = sr * min_interval / 1000
19
+ self.threshold = 10 ** (threshold / 20.)
20
+ self.hop_size = round(sr * hop_size / 1000)
21
+ self.win_size = min(round(min_interval), 4 * self.hop_size)
22
+ self.min_length = round(sr * min_length / 1000 / self.hop_size)
23
+ self.min_interval = round(min_interval / self.hop_size)
24
+ self.max_sil_kept = round(sr * max_sil_kept / 1000 / self.hop_size)
25
+
26
+ def _apply_slice(self, waveform, begin, end):
27
+ if len(waveform.shape) > 1:
28
+ return waveform[:, begin * self.hop_size: min(waveform.shape[1], end * self.hop_size)]
29
+ else:
30
+ return waveform[begin * self.hop_size: min(waveform.shape[0], end * self.hop_size)]
31
+
32
+ # @timeit
33
+ def slice(self, waveform):
34
+ if len(waveform.shape) > 1:
35
+ samples = librosa.to_mono(waveform)
36
+ else:
37
+ samples = waveform
38
+ if samples.shape[0] <= self.min_length:
39
+ return {"0": {"slice": False, "split_time": f"0,{len(waveform)}"}}
40
+ rms_list = librosa.feature.rms(y=samples, frame_length=self.win_size, hop_length=self.hop_size).squeeze(0)
41
+ sil_tags = []
42
+ silence_start = None
43
+ clip_start = 0
44
+ for i, rms in enumerate(rms_list):
45
+ # Keep looping while frame is silent.
46
+ if rms < self.threshold:
47
+ # Record start of silent frames.
48
+ if silence_start is None:
49
+ silence_start = i
50
+ continue
51
+ # Keep looping while frame is not silent and silence start has not been recorded.
52
+ if silence_start is None:
53
+ continue
54
+ # Clear recorded silence start if interval is not enough or clip is too short
55
+ is_leading_silence = silence_start == 0 and i > self.max_sil_kept
56
+ need_slice_middle = i - silence_start >= self.min_interval and i - clip_start >= self.min_length
57
+ if not is_leading_silence and not need_slice_middle:
58
+ silence_start = None
59
+ continue
60
+ # Need slicing. Record the range of silent frames to be removed.
61
+ if i - silence_start <= self.max_sil_kept:
62
+ pos = rms_list[silence_start: i + 1].argmin() + silence_start
63
+ if silence_start == 0:
64
+ sil_tags.append((0, pos))
65
+ else:
66
+ sil_tags.append((pos, pos))
67
+ clip_start = pos
68
+ elif i - silence_start <= self.max_sil_kept * 2:
69
+ pos = rms_list[i - self.max_sil_kept: silence_start + self.max_sil_kept + 1].argmin()
70
+ pos += i - self.max_sil_kept
71
+ pos_l = rms_list[silence_start: silence_start + self.max_sil_kept + 1].argmin() + silence_start
72
+ pos_r = rms_list[i - self.max_sil_kept: i + 1].argmin() + i - self.max_sil_kept
73
+ if silence_start == 0:
74
+ sil_tags.append((0, pos_r))
75
+ clip_start = pos_r
76
+ else:
77
+ sil_tags.append((min(pos_l, pos), max(pos_r, pos)))
78
+ clip_start = max(pos_r, pos)
79
+ else:
80
+ pos_l = rms_list[silence_start: silence_start + self.max_sil_kept + 1].argmin() + silence_start
81
+ pos_r = rms_list[i - self.max_sil_kept: i + 1].argmin() + i - self.max_sil_kept
82
+ if silence_start == 0:
83
+ sil_tags.append((0, pos_r))
84
+ else:
85
+ sil_tags.append((pos_l, pos_r))
86
+ clip_start = pos_r
87
+ silence_start = None
88
+ # Deal with trailing silence.
89
+ total_frames = rms_list.shape[0]
90
+ if silence_start is not None and total_frames - silence_start >= self.min_interval:
91
+ silence_end = min(total_frames, silence_start + self.max_sil_kept)
92
+ pos = rms_list[silence_start: silence_end + 1].argmin() + silence_start
93
+ sil_tags.append((pos, total_frames + 1))
94
+ # Apply and return slices.
95
+ if len(sil_tags) == 0:
96
+ return {"0": {"slice": False, "split_time": f"0,{len(waveform)}"}}
97
+ else:
98
+ chunks = []
99
+ # 第一段静音并非从头开始,补上有声片段
100
+ if sil_tags[0][0]:
101
+ chunks.append(
102
+ {"slice": False, "split_time": f"0,{min(waveform.shape[0], sil_tags[0][0] * self.hop_size)}"})
103
+ for i in range(0, len(sil_tags)):
104
+ # 标识有声片段(跳过第一段)
105
+ if i:
106
+ chunks.append({"slice": False,
107
+ "split_time": f"{sil_tags[i - 1][1] * self.hop_size},{min(waveform.shape[0], sil_tags[i][0] * self.hop_size)}"})
108
+ # 标识所有静音片段
109
+ chunks.append({"slice": True,
110
+ "split_time": f"{sil_tags[i][0] * self.hop_size},{min(waveform.shape[0], sil_tags[i][1] * self.hop_size)}"})
111
+ # 最后一段静音并非结尾,补上结尾片段
112
+ if sil_tags[-1][1] * self.hop_size < len(waveform):
113
+ chunks.append({"slice": False, "split_time": f"{sil_tags[-1][1] * self.hop_size},{len(waveform)}"})
114
+ chunk_dict = {}
115
+ for i in range(len(chunks)):
116
+ chunk_dict[str(i)] = chunks[i]
117
+ return chunk_dict
118
+
119
+
120
+ def cut(audio_path, db_thresh=-30, min_len=5000):
121
+ audio, sr = librosa.load(audio_path, sr=None)
122
+ slicer = Slicer(
123
+ sr=sr,
124
+ threshold=db_thresh,
125
+ min_length=min_len
126
+ )
127
+ chunks = slicer.slice(audio)
128
+ return chunks
129
+
130
+
131
+ def chunks2audio(audio_path, chunks):
132
+ chunks = dict(chunks)
133
+ audio, sr = torchaudio.load(audio_path)
134
+ if len(audio.shape) == 2 and audio.shape[1] >= 2:
135
+ audio = torch.mean(audio, dim=0).unsqueeze(0)
136
+ audio = audio.cpu().numpy()[0]
137
+ result = []
138
+ for k, v in chunks.items():
139
+ tag = v["split_time"].split(",")
140
+ if tag[0] != tag[1]:
141
+ result.append((v["slice"], audio[int(tag[0]):int(tag[1])]))
142
+ return result, sr
inference_main.py ADDED
@@ -0,0 +1,137 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import io
2
+ import logging
3
+ import time
4
+ from pathlib import Path
5
+
6
+ import librosa
7
+ import matplotlib.pyplot as plt
8
+ import numpy as np
9
+ import soundfile
10
+
11
+ from inference import infer_tool
12
+ from inference import slicer
13
+ from inference.infer_tool import Svc
14
+
15
+ logging.getLogger('numba').setLevel(logging.WARNING)
16
+ chunks_dict = infer_tool.read_temp("inference/chunks_temp.json")
17
+
18
+
19
+
20
+ def main():
21
+ import argparse
22
+
23
+ parser = argparse.ArgumentParser(description='sovits4 inference')
24
+
25
+ # 一定要设置的部分
26
+ parser.add_argument('-m', '--model_path', type=str, default="logs/44k/G_0.pth", help='模型路径')
27
+ parser.add_argument('-c', '--config_path', type=str, default="configs/config.json", help='配置文件路径')
28
+ parser.add_argument('-cl', '--clip', type=float, default=0, help='音频强制切片,默认0为自动切片,单位为秒/s')
29
+ parser.add_argument('-n', '--clean_names', type=str, nargs='+', default=["君の知らない物語-src.wav"], help='wav文件名列表,放在raw文件夹下')
30
+ parser.add_argument('-t', '--trans', type=int, nargs='+', default=[0], help='音高调整,支持正负(半音)')
31
+ parser.add_argument('-s', '--spk_list', type=str, nargs='+', default=['nen'], help='合成目标说话人名称')
32
+
33
+ # 可选项部分
34
+ parser.add_argument('-a', '--auto_predict_f0', action='store_true', default=False,help='语音转换自动预测音高,转换歌声时不要打开这个会严重跑调')
35
+ parser.add_argument('-cm', '--cluster_model_path', type=str, default="logs/44k/kmeans_10000.pt", help='聚类模型路径,如果没有训练聚类则随便填')
36
+ parser.add_argument('-cr', '--cluster_infer_ratio', type=float, default=0, help='聚类方案占比,范围0-1,若没有训练聚类模型则默认0即可')
37
+ parser.add_argument('-lg', '--linear_gradient', type=float, default=0, help='两段音频切片的交叉淡入长度,如果强制切片后出现人声不连贯可调整该数值,如果连贯建议采用默认值0,单位为秒')
38
+ parser.add_argument('-fmp', '--f0_mean_pooling', type=bool, default=False, help='是否对F0使用均值滤波器(池化),对部分哑音有改善。注意,启动该选项会导致推理速度下降,默认关闭')
39
+ parser.add_argument('-eh', '--enhance', type=bool, default=False, help='是否使用NSF_HIFIGAN增强器,该选项对部分训练集少的模型有一定的音质增强效果,但是对训练好的模型有反面效果,默认关闭')
40
+
41
+ # 不用动的部分
42
+ parser.add_argument('-sd', '--slice_db', type=int, default=-40, help='默认-40,嘈杂的音频可以-30,干声保留呼吸可以-50')
43
+ parser.add_argument('-d', '--device', type=str, default=None, help='推理设备,None则为自动选择cpu和gpu')
44
+ parser.add_argument('-ns', '--noice_scale', type=float, default=0.4, help='噪音级别,会影响咬字和音质,较为玄学')
45
+ parser.add_argument('-p', '--pad_seconds', type=float, default=0.5, help='推理音频pad秒数,由于未知原因开头结尾会有异响,pad一小段静音段后就不会出现')
46
+ parser.add_argument('-wf', '--wav_format', type=str, default='flac', help='音频输出格式')
47
+ parser.add_argument('-lgr', '--linear_gradient_retain', type=float, default=0.75, help='自动音频切片后,需要舍弃每段切片的头尾。该参数设置交叉长度保留的比例,范围0-1,左开右闭')
48
+ parser.add_argument('-eak', '--enhancer_adaptive_key', type=int, default=0, help='使增强器适应更高的音域(单位为半音数)|默认为0')
49
+
50
+ args = parser.parse_args()
51
+
52
+ clean_names = args.clean_names
53
+ trans = args.trans
54
+ spk_list = args.spk_list
55
+ slice_db = args.slice_db
56
+ wav_format = args.wav_format
57
+ auto_predict_f0 = args.auto_predict_f0
58
+ cluster_infer_ratio = args.cluster_infer_ratio
59
+ noice_scale = args.noice_scale
60
+ pad_seconds = args.pad_seconds
61
+ clip = args.clip
62
+ lg = args.linear_gradient
63
+ lgr = args.linear_gradient_retain
64
+ F0_mean_pooling = args.f0_mean_pooling
65
+ enhance = args.enhance
66
+ enhancer_adaptive_key = args.enhancer_adaptive_key
67
+
68
+ svc_model = Svc(args.model_path, args.config_path, args.device, args.cluster_model_path,enhance)
69
+ infer_tool.mkdir(["raw", "results"])
70
+
71
+ infer_tool.fill_a_to_b(trans, clean_names)
72
+ for clean_name, tran in zip(clean_names, trans):
73
+ raw_audio_path = f"raw/{clean_name}"
74
+ if "." not in raw_audio_path:
75
+ raw_audio_path += ".wav"
76
+ infer_tool.format_wav(raw_audio_path)
77
+ wav_path = Path(raw_audio_path).with_suffix('.wav')
78
+ chunks = slicer.cut(wav_path, db_thresh=slice_db)
79
+ audio_data, audio_sr = slicer.chunks2audio(wav_path, chunks)
80
+ per_size = int(clip*audio_sr)
81
+ lg_size = int(lg*audio_sr)
82
+ lg_size_r = int(lg_size*lgr)
83
+ lg_size_c_l = (lg_size-lg_size_r)//2
84
+ lg_size_c_r = lg_size-lg_size_r-lg_size_c_l
85
+ lg = np.linspace(0,1,lg_size_r) if lg_size!=0 else 0
86
+
87
+ for spk in spk_list:
88
+ audio = []
89
+ for (slice_tag, data) in audio_data:
90
+ print(f'#=====segment start, {round(len(data) / audio_sr, 3)}s======')
91
+
92
+ length = int(np.ceil(len(data) / audio_sr * svc_model.target_sample))
93
+ if slice_tag:
94
+ print('jump empty segment')
95
+ _audio = np.zeros(length)
96
+ audio.extend(list(infer_tool.pad_array(_audio, length)))
97
+ continue
98
+ if per_size != 0:
99
+ datas = infer_tool.split_list_by_n(data, per_size,lg_size)
100
+ else:
101
+ datas = [data]
102
+ for k,dat in enumerate(datas):
103
+ per_length = int(np.ceil(len(dat) / audio_sr * svc_model.target_sample)) if clip!=0 else length
104
+ if clip!=0: print(f'###=====segment clip start, {round(len(dat) / audio_sr, 3)}s======')
105
+ # padd
106
+ pad_len = int(audio_sr * pad_seconds)
107
+ dat = np.concatenate([np.zeros([pad_len]), dat, np.zeros([pad_len])])
108
+ raw_path = io.BytesIO()
109
+ soundfile.write(raw_path, dat, audio_sr, format="wav")
110
+ raw_path.seek(0)
111
+ out_audio, out_sr = svc_model.infer(spk, tran, raw_path,
112
+ cluster_infer_ratio=cluster_infer_ratio,
113
+ auto_predict_f0=auto_predict_f0,
114
+ noice_scale=noice_scale,
115
+ F0_mean_pooling = F0_mean_pooling,
116
+ enhancer_adaptive_key = enhancer_adaptive_key
117
+ )
118
+ _audio = out_audio.cpu().numpy()
119
+ pad_len = int(svc_model.target_sample * pad_seconds)
120
+ _audio = _audio[pad_len:-pad_len]
121
+ _audio = infer_tool.pad_array(_audio, per_length)
122
+ if lg_size!=0 and k!=0:
123
+ lg1 = audio[-(lg_size_r+lg_size_c_r):-lg_size_c_r] if lgr != 1 else audio[-lg_size:]
124
+ lg2 = _audio[lg_size_c_l:lg_size_c_l+lg_size_r] if lgr != 1 else _audio[0:lg_size]
125
+ lg_pre = lg1*(1-lg)+lg2*lg
126
+ audio = audio[0:-(lg_size_r+lg_size_c_r)] if lgr != 1 else audio[0:-lg_size]
127
+ audio.extend(lg_pre)
128
+ _audio = _audio[lg_size_c_l+lg_size_r:] if lgr != 1 else _audio[lg_size:]
129
+ audio.extend(list(_audio))
130
+ key = "auto" if auto_predict_f0 else f"{tran}key"
131
+ cluster_name = "" if cluster_infer_ratio == 0 else f"_{cluster_infer_ratio}"
132
+ res_path = f'./results/{clean_name}_{key}_{spk}{cluster_name}.{wav_format}'
133
+ soundfile.write(res_path, audio, svc_model.target_sample, format=wav_format)
134
+ svc_model.clear_empty()
135
+
136
+ if __name__ == '__main__':
137
+ main()
logs/44k/put_pretrained_model_here ADDED
File without changes
models.py ADDED
@@ -0,0 +1,420 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import copy
2
+ import math
3
+ import torch
4
+ from torch import nn
5
+ from torch.nn import functional as F
6
+
7
+ import modules.attentions as attentions
8
+ import modules.commons as commons
9
+ import modules.modules as modules
10
+
11
+ from torch.nn import Conv1d, ConvTranspose1d, AvgPool1d, Conv2d
12
+ from torch.nn.utils import weight_norm, remove_weight_norm, spectral_norm
13
+
14
+ import utils
15
+ from modules.commons import init_weights, get_padding
16
+ from vdecoder.hifigan.models import Generator
17
+ from utils import f0_to_coarse
18
+
19
+ class ResidualCouplingBlock(nn.Module):
20
+ def __init__(self,
21
+ channels,
22
+ hidden_channels,
23
+ kernel_size,
24
+ dilation_rate,
25
+ n_layers,
26
+ n_flows=4,
27
+ gin_channels=0):
28
+ super().__init__()
29
+ self.channels = channels
30
+ self.hidden_channels = hidden_channels
31
+ self.kernel_size = kernel_size
32
+ self.dilation_rate = dilation_rate
33
+ self.n_layers = n_layers
34
+ self.n_flows = n_flows
35
+ self.gin_channels = gin_channels
36
+
37
+ self.flows = nn.ModuleList()
38
+ for i in range(n_flows):
39
+ self.flows.append(modules.ResidualCouplingLayer(channels, hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=gin_channels, mean_only=True))
40
+ self.flows.append(modules.Flip())
41
+
42
+ def forward(self, x, x_mask, g=None, reverse=False):
43
+ if not reverse:
44
+ for flow in self.flows:
45
+ x, _ = flow(x, x_mask, g=g, reverse=reverse)
46
+ else:
47
+ for flow in reversed(self.flows):
48
+ x = flow(x, x_mask, g=g, reverse=reverse)
49
+ return x
50
+
51
+
52
+ class Encoder(nn.Module):
53
+ def __init__(self,
54
+ in_channels,
55
+ out_channels,
56
+ hidden_channels,
57
+ kernel_size,
58
+ dilation_rate,
59
+ n_layers,
60
+ gin_channels=0):
61
+ super().__init__()
62
+ self.in_channels = in_channels
63
+ self.out_channels = out_channels
64
+ self.hidden_channels = hidden_channels
65
+ self.kernel_size = kernel_size
66
+ self.dilation_rate = dilation_rate
67
+ self.n_layers = n_layers
68
+ self.gin_channels = gin_channels
69
+
70
+ self.pre = nn.Conv1d(in_channels, hidden_channels, 1)
71
+ self.enc = modules.WN(hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=gin_channels)
72
+ self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
73
+
74
+ def forward(self, x, x_lengths, g=None):
75
+ # print(x.shape,x_lengths.shape)
76
+ x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to(x.dtype)
77
+ x = self.pre(x) * x_mask
78
+ x = self.enc(x, x_mask, g=g)
79
+ stats = self.proj(x) * x_mask
80
+ m, logs = torch.split(stats, self.out_channels, dim=1)
81
+ z = (m + torch.randn_like(m) * torch.exp(logs)) * x_mask
82
+ return z, m, logs, x_mask
83
+
84
+
85
+ class TextEncoder(nn.Module):
86
+ def __init__(self,
87
+ out_channels,
88
+ hidden_channels,
89
+ kernel_size,
90
+ n_layers,
91
+ gin_channels=0,
92
+ filter_channels=None,
93
+ n_heads=None,
94
+ p_dropout=None):
95
+ super().__init__()
96
+ self.out_channels = out_channels
97
+ self.hidden_channels = hidden_channels
98
+ self.kernel_size = kernel_size
99
+ self.n_layers = n_layers
100
+ self.gin_channels = gin_channels
101
+ self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
102
+ self.f0_emb = nn.Embedding(256, hidden_channels)
103
+
104
+ self.enc_ = attentions.Encoder(
105
+ hidden_channels,
106
+ filter_channels,
107
+ n_heads,
108
+ n_layers,
109
+ kernel_size,
110
+ p_dropout)
111
+
112
+ def forward(self, x, x_mask, f0=None, noice_scale=1):
113
+ x = x + self.f0_emb(f0).transpose(1,2)
114
+ x = self.enc_(x * x_mask, x_mask)
115
+ stats = self.proj(x) * x_mask
116
+ m, logs = torch.split(stats, self.out_channels, dim=1)
117
+ z = (m + torch.randn_like(m) * torch.exp(logs) * noice_scale) * x_mask
118
+
119
+ return z, m, logs, x_mask
120
+
121
+
122
+
123
+ class DiscriminatorP(torch.nn.Module):
124
+ def __init__(self, period, kernel_size=5, stride=3, use_spectral_norm=False):
125
+ super(DiscriminatorP, self).__init__()
126
+ self.period = period
127
+ self.use_spectral_norm = use_spectral_norm
128
+ norm_f = weight_norm if use_spectral_norm == False else spectral_norm
129
+ self.convs = nn.ModuleList([
130
+ norm_f(Conv2d(1, 32, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
131
+ norm_f(Conv2d(32, 128, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
132
+ norm_f(Conv2d(128, 512, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
133
+ norm_f(Conv2d(512, 1024, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
134
+ norm_f(Conv2d(1024, 1024, (kernel_size, 1), 1, padding=(get_padding(kernel_size, 1), 0))),
135
+ ])
136
+ self.conv_post = norm_f(Conv2d(1024, 1, (3, 1), 1, padding=(1, 0)))
137
+
138
+ def forward(self, x):
139
+ fmap = []
140
+
141
+ # 1d to 2d
142
+ b, c, t = x.shape
143
+ if t % self.period != 0: # pad first
144
+ n_pad = self.period - (t % self.period)
145
+ x = F.pad(x, (0, n_pad), "reflect")
146
+ t = t + n_pad
147
+ x = x.view(b, c, t // self.period, self.period)
148
+
149
+ for l in self.convs:
150
+ x = l(x)
151
+ x = F.leaky_relu(x, modules.LRELU_SLOPE)
152
+ fmap.append(x)
153
+ x = self.conv_post(x)
154
+ fmap.append(x)
155
+ x = torch.flatten(x, 1, -1)
156
+
157
+ return x, fmap
158
+
159
+
160
+ class DiscriminatorS(torch.nn.Module):
161
+ def __init__(self, use_spectral_norm=False):
162
+ super(DiscriminatorS, self).__init__()
163
+ norm_f = weight_norm if use_spectral_norm == False else spectral_norm
164
+ self.convs = nn.ModuleList([
165
+ norm_f(Conv1d(1, 16, 15, 1, padding=7)),
166
+ norm_f(Conv1d(16, 64, 41, 4, groups=4, padding=20)),
167
+ norm_f(Conv1d(64, 256, 41, 4, groups=16, padding=20)),
168
+ norm_f(Conv1d(256, 1024, 41, 4, groups=64, padding=20)),
169
+ norm_f(Conv1d(1024, 1024, 41, 4, groups=256, padding=20)),
170
+ norm_f(Conv1d(1024, 1024, 5, 1, padding=2)),
171
+ ])
172
+ self.conv_post = norm_f(Conv1d(1024, 1, 3, 1, padding=1))
173
+
174
+ def forward(self, x):
175
+ fmap = []
176
+
177
+ for l in self.convs:
178
+ x = l(x)
179
+ x = F.leaky_relu(x, modules.LRELU_SLOPE)
180
+ fmap.append(x)
181
+ x = self.conv_post(x)
182
+ fmap.append(x)
183
+ x = torch.flatten(x, 1, -1)
184
+
185
+ return x, fmap
186
+
187
+
188
+ class MultiPeriodDiscriminator(torch.nn.Module):
189
+ def __init__(self, use_spectral_norm=False):
190
+ super(MultiPeriodDiscriminator, self).__init__()
191
+ periods = [2,3,5,7,11]
192
+
193
+ discs = [DiscriminatorS(use_spectral_norm=use_spectral_norm)]
194
+ discs = discs + [DiscriminatorP(i, use_spectral_norm=use_spectral_norm) for i in periods]
195
+ self.discriminators = nn.ModuleList(discs)
196
+
197
+ def forward(self, y, y_hat):
198
+ y_d_rs = []
199
+ y_d_gs = []
200
+ fmap_rs = []
201
+ fmap_gs = []
202
+ for i, d in enumerate(self.discriminators):
203
+ y_d_r, fmap_r = d(y)
204
+ y_d_g, fmap_g = d(y_hat)
205
+ y_d_rs.append(y_d_r)
206
+ y_d_gs.append(y_d_g)
207
+ fmap_rs.append(fmap_r)
208
+ fmap_gs.append(fmap_g)
209
+
210
+ return y_d_rs, y_d_gs, fmap_rs, fmap_gs
211
+
212
+
213
+ class SpeakerEncoder(torch.nn.Module):
214
+ def __init__(self, mel_n_channels=80, model_num_layers=3, model_hidden_size=256, model_embedding_size=256):
215
+ super(SpeakerEncoder, self).__init__()
216
+ self.lstm = nn.LSTM(mel_n_channels, model_hidden_size, model_num_layers, batch_first=True)
217
+ self.linear = nn.Linear(model_hidden_size, model_embedding_size)
218
+ self.relu = nn.ReLU()
219
+
220
+ def forward(self, mels):
221
+ self.lstm.flatten_parameters()
222
+ _, (hidden, _) = self.lstm(mels)
223
+ embeds_raw = self.relu(self.linear(hidden[-1]))
224
+ return embeds_raw / torch.norm(embeds_raw, dim=1, keepdim=True)
225
+
226
+ def compute_partial_slices(self, total_frames, partial_frames, partial_hop):
227
+ mel_slices = []
228
+ for i in range(0, total_frames-partial_frames, partial_hop):
229
+ mel_range = torch.arange(i, i+partial_frames)
230
+ mel_slices.append(mel_range)
231
+
232
+ return mel_slices
233
+
234
+ def embed_utterance(self, mel, partial_frames=128, partial_hop=64):
235
+ mel_len = mel.size(1)
236
+ last_mel = mel[:,-partial_frames:]
237
+
238
+ if mel_len > partial_frames:
239
+ mel_slices = self.compute_partial_slices(mel_len, partial_frames, partial_hop)
240
+ mels = list(mel[:,s] for s in mel_slices)
241
+ mels.append(last_mel)
242
+ mels = torch.stack(tuple(mels), 0).squeeze(1)
243
+
244
+ with torch.no_grad():
245
+ partial_embeds = self(mels)
246
+ embed = torch.mean(partial_embeds, axis=0).unsqueeze(0)
247
+ #embed = embed / torch.linalg.norm(embed, 2)
248
+ else:
249
+ with torch.no_grad():
250
+ embed = self(last_mel)
251
+
252
+ return embed
253
+
254
+ class F0Decoder(nn.Module):
255
+ def __init__(self,
256
+ out_channels,
257
+ hidden_channels,
258
+ filter_channels,
259
+ n_heads,
260
+ n_layers,
261
+ kernel_size,
262
+ p_dropout,
263
+ spk_channels=0):
264
+ super().__init__()
265
+ self.out_channels = out_channels
266
+ self.hidden_channels = hidden_channels
267
+ self.filter_channels = filter_channels
268
+ self.n_heads = n_heads
269
+ self.n_layers = n_layers
270
+ self.kernel_size = kernel_size
271
+ self.p_dropout = p_dropout
272
+ self.spk_channels = spk_channels
273
+
274
+ self.prenet = nn.Conv1d(hidden_channels, hidden_channels, 3, padding=1)
275
+ self.decoder = attentions.FFT(
276
+ hidden_channels,
277
+ filter_channels,
278
+ n_heads,
279
+ n_layers,
280
+ kernel_size,
281
+ p_dropout)
282
+ self.proj = nn.Conv1d(hidden_channels, out_channels, 1)
283
+ self.f0_prenet = nn.Conv1d(1, hidden_channels , 3, padding=1)
284
+ self.cond = nn.Conv1d(spk_channels, hidden_channels, 1)
285
+
286
+ def forward(self, x, norm_f0, x_mask, spk_emb=None):
287
+ x = torch.detach(x)
288
+ if (spk_emb is not None):
289
+ x = x + self.cond(spk_emb)
290
+ x += self.f0_prenet(norm_f0)
291
+ x = self.prenet(x) * x_mask
292
+ x = self.decoder(x * x_mask, x_mask)
293
+ x = self.proj(x) * x_mask
294
+ return x
295
+
296
+
297
+ class SynthesizerTrn(nn.Module):
298
+ """
299
+ Synthesizer for Training
300
+ """
301
+
302
+ def __init__(self,
303
+ spec_channels,
304
+ segment_size,
305
+ inter_channels,
306
+ hidden_channels,
307
+ filter_channels,
308
+ n_heads,
309
+ n_layers,
310
+ kernel_size,
311
+ p_dropout,
312
+ resblock,
313
+ resblock_kernel_sizes,
314
+ resblock_dilation_sizes,
315
+ upsample_rates,
316
+ upsample_initial_channel,
317
+ upsample_kernel_sizes,
318
+ gin_channels,
319
+ ssl_dim,
320
+ n_speakers,
321
+ sampling_rate=44100,
322
+ **kwargs):
323
+
324
+ super().__init__()
325
+ self.spec_channels = spec_channels
326
+ self.inter_channels = inter_channels
327
+ self.hidden_channels = hidden_channels
328
+ self.filter_channels = filter_channels
329
+ self.n_heads = n_heads
330
+ self.n_layers = n_layers
331
+ self.kernel_size = kernel_size
332
+ self.p_dropout = p_dropout
333
+ self.resblock = resblock
334
+ self.resblock_kernel_sizes = resblock_kernel_sizes
335
+ self.resblock_dilation_sizes = resblock_dilation_sizes
336
+ self.upsample_rates = upsample_rates
337
+ self.upsample_initial_channel = upsample_initial_channel
338
+ self.upsample_kernel_sizes = upsample_kernel_sizes
339
+ self.segment_size = segment_size
340
+ self.gin_channels = gin_channels
341
+ self.ssl_dim = ssl_dim
342
+ self.emb_g = nn.Embedding(n_speakers, gin_channels)
343
+
344
+ self.pre = nn.Conv1d(ssl_dim, hidden_channels, kernel_size=5, padding=2)
345
+
346
+ self.enc_p = TextEncoder(
347
+ inter_channels,
348
+ hidden_channels,
349
+ filter_channels=filter_channels,
350
+ n_heads=n_heads,
351
+ n_layers=n_layers,
352
+ kernel_size=kernel_size,
353
+ p_dropout=p_dropout
354
+ )
355
+ hps = {
356
+ "sampling_rate": sampling_rate,
357
+ "inter_channels": inter_channels,
358
+ "resblock": resblock,
359
+ "resblock_kernel_sizes": resblock_kernel_sizes,
360
+ "resblock_dilation_sizes": resblock_dilation_sizes,
361
+ "upsample_rates": upsample_rates,
362
+ "upsample_initial_channel": upsample_initial_channel,
363
+ "upsample_kernel_sizes": upsample_kernel_sizes,
364
+ "gin_channels": gin_channels,
365
+ }
366
+ self.dec = Generator(h=hps)
367
+ self.enc_q = Encoder(spec_channels, inter_channels, hidden_channels, 5, 1, 16, gin_channels=gin_channels)
368
+ self.flow = ResidualCouplingBlock(inter_channels, hidden_channels, 5, 1, 4, gin_channels=gin_channels)
369
+ self.f0_decoder = F0Decoder(
370
+ 1,
371
+ hidden_channels,
372
+ filter_channels,
373
+ n_heads,
374
+ n_layers,
375
+ kernel_size,
376
+ p_dropout,
377
+ spk_channels=gin_channels
378
+ )
379
+ self.emb_uv = nn.Embedding(2, hidden_channels)
380
+
381
+ def forward(self, c, f0, uv, spec, g=None, c_lengths=None, spec_lengths=None):
382
+ g = self.emb_g(g).transpose(1,2)
383
+ # ssl prenet
384
+ x_mask = torch.unsqueeze(commons.sequence_mask(c_lengths, c.size(2)), 1).to(c.dtype)
385
+ x = self.pre(c) * x_mask + self.emb_uv(uv.long()).transpose(1,2)
386
+
387
+ # f0 predict
388
+ lf0 = 2595. * torch.log10(1. + f0.unsqueeze(1) / 700.) / 500
389
+ norm_lf0 = utils.normalize_f0(lf0, x_mask, uv)
390
+ pred_lf0 = self.f0_decoder(x, norm_lf0, x_mask, spk_emb=g)
391
+
392
+ # encoder
393
+ z_ptemp, m_p, logs_p, _ = self.enc_p(x, x_mask, f0=f0_to_coarse(f0))
394
+ z, m_q, logs_q, spec_mask = self.enc_q(spec, spec_lengths, g=g)
395
+
396
+ # flow
397
+ z_p = self.flow(z, spec_mask, g=g)
398
+ z_slice, pitch_slice, ids_slice = commons.rand_slice_segments_with_pitch(z, f0, spec_lengths, self.segment_size)
399
+
400
+ # nsf decoder
401
+ o = self.dec(z_slice, g=g, f0=pitch_slice)
402
+
403
+ return o, ids_slice, spec_mask, (z, z_p, m_p, logs_p, m_q, logs_q), pred_lf0, norm_lf0, lf0
404
+
405
+ def infer(self, c, f0, uv, g=None, noice_scale=0.35, predict_f0=False):
406
+ c_lengths = (torch.ones(c.size(0)) * c.size(-1)).to(c.device)
407
+ g = self.emb_g(g).transpose(1,2)
408
+ x_mask = torch.unsqueeze(commons.sequence_mask(c_lengths, c.size(2)), 1).to(c.dtype)
409
+ x = self.pre(c) * x_mask + self.emb_uv(uv.long()).transpose(1,2)
410
+
411
+ if predict_f0:
412
+ lf0 = 2595. * torch.log10(1. + f0.unsqueeze(1) / 700.) / 500
413
+ norm_lf0 = utils.normalize_f0(lf0, x_mask, uv, random_scale=False)
414
+ pred_lf0 = self.f0_decoder(x, norm_lf0, x_mask, spk_emb=g)
415
+ f0 = (700 * (torch.pow(10, pred_lf0 * 500 / 2595) - 1)).squeeze(1)
416
+
417
+ z_p, m_p, logs_p, c_mask = self.enc_p(x, x_mask, f0=f0_to_coarse(f0), noice_scale=noice_scale)
418
+ z = self.flow(z_p, c_mask, g=g, reverse=True)
419
+ o = self.dec(z * c_mask, g=g, f0=f0)
420
+ return o
modules/__init__.py ADDED
File without changes
modules/attentions.py ADDED
@@ -0,0 +1,349 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import copy
2
+ import math
3
+ import numpy as np
4
+ import torch
5
+ from torch import nn
6
+ from torch.nn import functional as F
7
+
8
+ import modules.commons as commons
9
+ import modules.modules as modules
10
+ from modules.modules import LayerNorm
11
+
12
+
13
+ class FFT(nn.Module):
14
+ def __init__(self, hidden_channels, filter_channels, n_heads, n_layers=1, kernel_size=1, p_dropout=0.,
15
+ proximal_bias=False, proximal_init=True, **kwargs):
16
+ super().__init__()
17
+ self.hidden_channels = hidden_channels
18
+ self.filter_channels = filter_channels
19
+ self.n_heads = n_heads
20
+ self.n_layers = n_layers
21
+ self.kernel_size = kernel_size
22
+ self.p_dropout = p_dropout
23
+ self.proximal_bias = proximal_bias
24
+ self.proximal_init = proximal_init
25
+
26
+ self.drop = nn.Dropout(p_dropout)
27
+ self.self_attn_layers = nn.ModuleList()
28
+ self.norm_layers_0 = nn.ModuleList()
29
+ self.ffn_layers = nn.ModuleList()
30
+ self.norm_layers_1 = nn.ModuleList()
31
+ for i in range(self.n_layers):
32
+ self.self_attn_layers.append(
33
+ MultiHeadAttention(hidden_channels, hidden_channels, n_heads, p_dropout=p_dropout, proximal_bias=proximal_bias,
34
+ proximal_init=proximal_init))
35
+ self.norm_layers_0.append(LayerNorm(hidden_channels))
36
+ self.ffn_layers.append(
37
+ FFN(hidden_channels, hidden_channels, filter_channels, kernel_size, p_dropout=p_dropout, causal=True))
38
+ self.norm_layers_1.append(LayerNorm(hidden_channels))
39
+
40
+ def forward(self, x, x_mask):
41
+ """
42
+ x: decoder input
43
+ h: encoder output
44
+ """
45
+ self_attn_mask = commons.subsequent_mask(x_mask.size(2)).to(device=x.device, dtype=x.dtype)
46
+ x = x * x_mask
47
+ for i in range(self.n_layers):
48
+ y = self.self_attn_layers[i](x, x, self_attn_mask)
49
+ y = self.drop(y)
50
+ x = self.norm_layers_0[i](x + y)
51
+
52
+ y = self.ffn_layers[i](x, x_mask)
53
+ y = self.drop(y)
54
+ x = self.norm_layers_1[i](x + y)
55
+ x = x * x_mask
56
+ return x
57
+
58
+
59
+ class Encoder(nn.Module):
60
+ def __init__(self, hidden_channels, filter_channels, n_heads, n_layers, kernel_size=1, p_dropout=0., window_size=4, **kwargs):
61
+ super().__init__()
62
+ self.hidden_channels = hidden_channels
63
+ self.filter_channels = filter_channels
64
+ self.n_heads = n_heads
65
+ self.n_layers = n_layers
66
+ self.kernel_size = kernel_size
67
+ self.p_dropout = p_dropout
68
+ self.window_size = window_size
69
+
70
+ self.drop = nn.Dropout(p_dropout)
71
+ self.attn_layers = nn.ModuleList()
72
+ self.norm_layers_1 = nn.ModuleList()
73
+ self.ffn_layers = nn.ModuleList()
74
+ self.norm_layers_2 = nn.ModuleList()
75
+ for i in range(self.n_layers):
76
+ self.attn_layers.append(MultiHeadAttention(hidden_channels, hidden_channels, n_heads, p_dropout=p_dropout, window_size=window_size))
77
+ self.norm_layers_1.append(LayerNorm(hidden_channels))
78
+ self.ffn_layers.append(FFN(hidden_channels, hidden_channels, filter_channels, kernel_size, p_dropout=p_dropout))
79
+ self.norm_layers_2.append(LayerNorm(hidden_channels))
80
+
81
+ def forward(self, x, x_mask):
82
+ attn_mask = x_mask.unsqueeze(2) * x_mask.unsqueeze(-1)
83
+ x = x * x_mask
84
+ for i in range(self.n_layers):
85
+ y = self.attn_layers[i](x, x, attn_mask)
86
+ y = self.drop(y)
87
+ x = self.norm_layers_1[i](x + y)
88
+
89
+ y = self.ffn_layers[i](x, x_mask)
90
+ y = self.drop(y)
91
+ x = self.norm_layers_2[i](x + y)
92
+ x = x * x_mask
93
+ return x
94
+
95
+
96
+ class Decoder(nn.Module):
97
+ def __init__(self, hidden_channels, filter_channels, n_heads, n_layers, kernel_size=1, p_dropout=0., proximal_bias=False, proximal_init=True, **kwargs):
98
+ super().__init__()
99
+ self.hidden_channels = hidden_channels
100
+ self.filter_channels = filter_channels
101
+ self.n_heads = n_heads
102
+ self.n_layers = n_layers
103
+ self.kernel_size = kernel_size
104
+ self.p_dropout = p_dropout
105
+ self.proximal_bias = proximal_bias
106
+ self.proximal_init = proximal_init
107
+
108
+ self.drop = nn.Dropout(p_dropout)
109
+ self.self_attn_layers = nn.ModuleList()
110
+ self.norm_layers_0 = nn.ModuleList()
111
+ self.encdec_attn_layers = nn.ModuleList()
112
+ self.norm_layers_1 = nn.ModuleList()
113
+ self.ffn_layers = nn.ModuleList()
114
+ self.norm_layers_2 = nn.ModuleList()
115
+ for i in range(self.n_layers):
116
+ self.self_attn_layers.append(MultiHeadAttention(hidden_channels, hidden_channels, n_heads, p_dropout=p_dropout, proximal_bias=proximal_bias, proximal_init=proximal_init))
117
+ self.norm_layers_0.append(LayerNorm(hidden_channels))
118
+ self.encdec_attn_layers.append(MultiHeadAttention(hidden_channels, hidden_channels, n_heads, p_dropout=p_dropout))
119
+ self.norm_layers_1.append(LayerNorm(hidden_channels))
120
+ self.ffn_layers.append(FFN(hidden_channels, hidden_channels, filter_channels, kernel_size, p_dropout=p_dropout, causal=True))
121
+ self.norm_layers_2.append(LayerNorm(hidden_channels))
122
+
123
+ def forward(self, x, x_mask, h, h_mask):
124
+ """
125
+ x: decoder input
126
+ h: encoder output
127
+ """
128
+ self_attn_mask = commons.subsequent_mask(x_mask.size(2)).to(device=x.device, dtype=x.dtype)
129
+ encdec_attn_mask = h_mask.unsqueeze(2) * x_mask.unsqueeze(-1)
130
+ x = x * x_mask
131
+ for i in range(self.n_layers):
132
+ y = self.self_attn_layers[i](x, x, self_attn_mask)
133
+ y = self.drop(y)
134
+ x = self.norm_layers_0[i](x + y)
135
+
136
+ y = self.encdec_attn_layers[i](x, h, encdec_attn_mask)
137
+ y = self.drop(y)
138
+ x = self.norm_layers_1[i](x + y)
139
+
140
+ y = self.ffn_layers[i](x, x_mask)
141
+ y = self.drop(y)
142
+ x = self.norm_layers_2[i](x + y)
143
+ x = x * x_mask
144
+ return x
145
+
146
+
147
+ class MultiHeadAttention(nn.Module):
148
+ def __init__(self, channels, out_channels, n_heads, p_dropout=0., window_size=None, heads_share=True, block_length=None, proximal_bias=False, proximal_init=False):
149
+ super().__init__()
150
+ assert channels % n_heads == 0
151
+
152
+ self.channels = channels
153
+ self.out_channels = out_channels
154
+ self.n_heads = n_heads
155
+ self.p_dropout = p_dropout
156
+ self.window_size = window_size
157
+ self.heads_share = heads_share
158
+ self.block_length = block_length
159
+ self.proximal_bias = proximal_bias
160
+ self.proximal_init = proximal_init
161
+ self.attn = None
162
+
163
+ self.k_channels = channels // n_heads
164
+ self.conv_q = nn.Conv1d(channels, channels, 1)
165
+ self.conv_k = nn.Conv1d(channels, channels, 1)
166
+ self.conv_v = nn.Conv1d(channels, channels, 1)
167
+ self.conv_o = nn.Conv1d(channels, out_channels, 1)
168
+ self.drop = nn.Dropout(p_dropout)
169
+
170
+ if window_size is not None:
171
+ n_heads_rel = 1 if heads_share else n_heads
172
+ rel_stddev = self.k_channels**-0.5
173
+ self.emb_rel_k = nn.Parameter(torch.randn(n_heads_rel, window_size * 2 + 1, self.k_channels) * rel_stddev)
174
+ self.emb_rel_v = nn.Parameter(torch.randn(n_heads_rel, window_size * 2 + 1, self.k_channels) * rel_stddev)
175
+
176
+ nn.init.xavier_uniform_(self.conv_q.weight)
177
+ nn.init.xavier_uniform_(self.conv_k.weight)
178
+ nn.init.xavier_uniform_(self.conv_v.weight)
179
+ if proximal_init:
180
+ with torch.no_grad():
181
+ self.conv_k.weight.copy_(self.conv_q.weight)
182
+ self.conv_k.bias.copy_(self.conv_q.bias)
183
+
184
+ def forward(self, x, c, attn_mask=None):
185
+ q = self.conv_q(x)
186
+ k = self.conv_k(c)
187
+ v = self.conv_v(c)
188
+
189
+ x, self.attn = self.attention(q, k, v, mask=attn_mask)
190
+
191
+ x = self.conv_o(x)
192
+ return x
193
+
194
+ def attention(self, query, key, value, mask=None):
195
+ # reshape [b, d, t] -> [b, n_h, t, d_k]
196
+ b, d, t_s, t_t = (*key.size(), query.size(2))
197
+ query = query.view(b, self.n_heads, self.k_channels, t_t).transpose(2, 3)
198
+ key = key.view(b, self.n_heads, self.k_channels, t_s).transpose(2, 3)
199
+ value = value.view(b, self.n_heads, self.k_channels, t_s).transpose(2, 3)
200
+
201
+ scores = torch.matmul(query / math.sqrt(self.k_channels), key.transpose(-2, -1))
202
+ if self.window_size is not None:
203
+ assert t_s == t_t, "Relative attention is only available for self-attention."
204
+ key_relative_embeddings = self._get_relative_embeddings(self.emb_rel_k, t_s)
205
+ rel_logits = self._matmul_with_relative_keys(query /math.sqrt(self.k_channels), key_relative_embeddings)
206
+ scores_local = self._relative_position_to_absolute_position(rel_logits)
207
+ scores = scores + scores_local
208
+ if self.proximal_bias:
209
+ assert t_s == t_t, "Proximal bias is only available for self-attention."
210
+ scores = scores + self._attention_bias_proximal(t_s).to(device=scores.device, dtype=scores.dtype)
211
+ if mask is not None:
212
+ scores = scores.masked_fill(mask == 0, -1e4)
213
+ if self.block_length is not None:
214
+ assert t_s == t_t, "Local attention is only available for self-attention."
215
+ block_mask = torch.ones_like(scores).triu(-self.block_length).tril(self.block_length)
216
+ scores = scores.masked_fill(block_mask == 0, -1e4)
217
+ p_attn = F.softmax(scores, dim=-1) # [b, n_h, t_t, t_s]
218
+ p_attn = self.drop(p_attn)
219
+ output = torch.matmul(p_attn, value)
220
+ if self.window_size is not None:
221
+ relative_weights = self._absolute_position_to_relative_position(p_attn)
222
+ value_relative_embeddings = self._get_relative_embeddings(self.emb_rel_v, t_s)
223
+ output = output + self._matmul_with_relative_values(relative_weights, value_relative_embeddings)
224
+ output = output.transpose(2, 3).contiguous().view(b, d, t_t) # [b, n_h, t_t, d_k] -> [b, d, t_t]
225
+ return output, p_attn
226
+
227
+ def _matmul_with_relative_values(self, x, y):
228
+ """
229
+ x: [b, h, l, m]
230
+ y: [h or 1, m, d]
231
+ ret: [b, h, l, d]
232
+ """
233
+ ret = torch.matmul(x, y.unsqueeze(0))
234
+ return ret
235
+
236
+ def _matmul_with_relative_keys(self, x, y):
237
+ """
238
+ x: [b, h, l, d]
239
+ y: [h or 1, m, d]
240
+ ret: [b, h, l, m]
241
+ """
242
+ ret = torch.matmul(x, y.unsqueeze(0).transpose(-2, -1))
243
+ return ret
244
+
245
+ def _get_relative_embeddings(self, relative_embeddings, length):
246
+ max_relative_position = 2 * self.window_size + 1
247
+ # Pad first before slice to avoid using cond ops.
248
+ pad_length = max(length - (self.window_size + 1), 0)
249
+ slice_start_position = max((self.window_size + 1) - length, 0)
250
+ slice_end_position = slice_start_position + 2 * length - 1
251
+ if pad_length > 0:
252
+ padded_relative_embeddings = F.pad(
253
+ relative_embeddings,
254
+ commons.convert_pad_shape([[0, 0], [pad_length, pad_length], [0, 0]]))
255
+ else:
256
+ padded_relative_embeddings = relative_embeddings
257
+ used_relative_embeddings = padded_relative_embeddings[:,slice_start_position:slice_end_position]
258
+ return used_relative_embeddings
259
+
260
+ def _relative_position_to_absolute_position(self, x):
261
+ """
262
+ x: [b, h, l, 2*l-1]
263
+ ret: [b, h, l, l]
264
+ """
265
+ batch, heads, length, _ = x.size()
266
+ # Concat columns of pad to shift from relative to absolute indexing.
267
+ x = F.pad(x, commons.convert_pad_shape([[0,0],[0,0],[0,0],[0,1]]))
268
+
269
+ # Concat extra elements so to add up to shape (len+1, 2*len-1).
270
+ x_flat = x.view([batch, heads, length * 2 * length])
271
+ x_flat = F.pad(x_flat, commons.convert_pad_shape([[0,0],[0,0],[0,length-1]]))
272
+
273
+ # Reshape and slice out the padded elements.
274
+ x_final = x_flat.view([batch, heads, length+1, 2*length-1])[:, :, :length, length-1:]
275
+ return x_final
276
+
277
+ def _absolute_position_to_relative_position(self, x):
278
+ """
279
+ x: [b, h, l, l]
280
+ ret: [b, h, l, 2*l-1]
281
+ """
282
+ batch, heads, length, _ = x.size()
283
+ # padd along column
284
+ x = F.pad(x, commons.convert_pad_shape([[0, 0], [0, 0], [0, 0], [0, length-1]]))
285
+ x_flat = x.view([batch, heads, length**2 + length*(length -1)])
286
+ # add 0's in the beginning that will skew the elements after reshape
287
+ x_flat = F.pad(x_flat, commons.convert_pad_shape([[0, 0], [0, 0], [length, 0]]))
288
+ x_final = x_flat.view([batch, heads, length, 2*length])[:,:,:,1:]
289
+ return x_final
290
+
291
+ def _attention_bias_proximal(self, length):
292
+ """Bias for self-attention to encourage attention to close positions.
293
+ Args:
294
+ length: an integer scalar.
295
+ Returns:
296
+ a Tensor with shape [1, 1, length, length]
297
+ """
298
+ r = torch.arange(length, dtype=torch.float32)
299
+ diff = torch.unsqueeze(r, 0) - torch.unsqueeze(r, 1)
300
+ return torch.unsqueeze(torch.unsqueeze(-torch.log1p(torch.abs(diff)), 0), 0)
301
+
302
+
303
+ class FFN(nn.Module):
304
+ def __init__(self, in_channels, out_channels, filter_channels, kernel_size, p_dropout=0., activation=None, causal=False):
305
+ super().__init__()
306
+ self.in_channels = in_channels
307
+ self.out_channels = out_channels
308
+ self.filter_channels = filter_channels
309
+ self.kernel_size = kernel_size
310
+ self.p_dropout = p_dropout
311
+ self.activation = activation
312
+ self.causal = causal
313
+
314
+ if causal:
315
+ self.padding = self._causal_padding
316
+ else:
317
+ self.padding = self._same_padding
318
+
319
+ self.conv_1 = nn.Conv1d(in_channels, filter_channels, kernel_size)
320
+ self.conv_2 = nn.Conv1d(filter_channels, out_channels, kernel_size)
321
+ self.drop = nn.Dropout(p_dropout)
322
+
323
+ def forward(self, x, x_mask):
324
+ x = self.conv_1(self.padding(x * x_mask))
325
+ if self.activation == "gelu":
326
+ x = x * torch.sigmoid(1.702 * x)
327
+ else:
328
+ x = torch.relu(x)
329
+ x = self.drop(x)
330
+ x = self.conv_2(self.padding(x * x_mask))
331
+ return x * x_mask
332
+
333
+ def _causal_padding(self, x):
334
+ if self.kernel_size == 1:
335
+ return x
336
+ pad_l = self.kernel_size - 1
337
+ pad_r = 0
338
+ padding = [[0, 0], [0, 0], [pad_l, pad_r]]
339
+ x = F.pad(x, commons.convert_pad_shape(padding))
340
+ return x
341
+
342
+ def _same_padding(self, x):
343
+ if self.kernel_size == 1:
344
+ return x
345
+ pad_l = (self.kernel_size - 1) // 2
346
+ pad_r = self.kernel_size // 2
347
+ padding = [[0, 0], [0, 0], [pad_l, pad_r]]
348
+ x = F.pad(x, commons.convert_pad_shape(padding))
349
+ return x
modules/commons.py ADDED
@@ -0,0 +1,188 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math
2
+ import numpy as np
3
+ import torch
4
+ from torch import nn
5
+ from torch.nn import functional as F
6
+
7
+ def slice_pitch_segments(x, ids_str, segment_size=4):
8
+ ret = torch.zeros_like(x[:, :segment_size])
9
+ for i in range(x.size(0)):
10
+ idx_str = ids_str[i]
11
+ idx_end = idx_str + segment_size
12
+ ret[i] = x[i, idx_str:idx_end]
13
+ return ret
14
+
15
+ def rand_slice_segments_with_pitch(x, pitch, x_lengths=None, segment_size=4):
16
+ b, d, t = x.size()
17
+ if x_lengths is None:
18
+ x_lengths = t
19
+ ids_str_max = x_lengths - segment_size + 1
20
+ ids_str = (torch.rand([b]).to(device=x.device) * ids_str_max).to(dtype=torch.long)
21
+ ret = slice_segments(x, ids_str, segment_size)
22
+ ret_pitch = slice_pitch_segments(pitch, ids_str, segment_size)
23
+ return ret, ret_pitch, ids_str
24
+
25
+ def init_weights(m, mean=0.0, std=0.01):
26
+ classname = m.__class__.__name__
27
+ if classname.find("Conv") != -1:
28
+ m.weight.data.normal_(mean, std)
29
+
30
+
31
+ def get_padding(kernel_size, dilation=1):
32
+ return int((kernel_size*dilation - dilation)/2)
33
+
34
+
35
+ def convert_pad_shape(pad_shape):
36
+ l = pad_shape[::-1]
37
+ pad_shape = [item for sublist in l for item in sublist]
38
+ return pad_shape
39
+
40
+
41
+ def intersperse(lst, item):
42
+ result = [item] * (len(lst) * 2 + 1)
43
+ result[1::2] = lst
44
+ return result
45
+
46
+
47
+ def kl_divergence(m_p, logs_p, m_q, logs_q):
48
+ """KL(P||Q)"""
49
+ kl = (logs_q - logs_p) - 0.5
50
+ kl += 0.5 * (torch.exp(2. * logs_p) + ((m_p - m_q)**2)) * torch.exp(-2. * logs_q)
51
+ return kl
52
+
53
+
54
+ def rand_gumbel(shape):
55
+ """Sample from the Gumbel distribution, protect from overflows."""
56
+ uniform_samples = torch.rand(shape) * 0.99998 + 0.00001
57
+ return -torch.log(-torch.log(uniform_samples))
58
+
59
+
60
+ def rand_gumbel_like(x):
61
+ g = rand_gumbel(x.size()).to(dtype=x.dtype, device=x.device)
62
+ return g
63
+
64
+
65
+ def slice_segments(x, ids_str, segment_size=4):
66
+ ret = torch.zeros_like(x[:, :, :segment_size])
67
+ for i in range(x.size(0)):
68
+ idx_str = ids_str[i]
69
+ idx_end = idx_str + segment_size
70
+ ret[i] = x[i, :, idx_str:idx_end]
71
+ return ret
72
+
73
+
74
+ def rand_slice_segments(x, x_lengths=None, segment_size=4):
75
+ b, d, t = x.size()
76
+ if x_lengths is None:
77
+ x_lengths = t
78
+ ids_str_max = x_lengths - segment_size + 1
79
+ ids_str = (torch.rand([b]).to(device=x.device) * ids_str_max).to(dtype=torch.long)
80
+ ret = slice_segments(x, ids_str, segment_size)
81
+ return ret, ids_str
82
+
83
+
84
+ def rand_spec_segments(x, x_lengths=None, segment_size=4):
85
+ b, d, t = x.size()
86
+ if x_lengths is None:
87
+ x_lengths = t
88
+ ids_str_max = x_lengths - segment_size
89
+ ids_str = (torch.rand([b]).to(device=x.device) * ids_str_max).to(dtype=torch.long)
90
+ ret = slice_segments(x, ids_str, segment_size)
91
+ return ret, ids_str
92
+
93
+
94
+ def get_timing_signal_1d(
95
+ length, channels, min_timescale=1.0, max_timescale=1.0e4):
96
+ position = torch.arange(length, dtype=torch.float)
97
+ num_timescales = channels // 2
98
+ log_timescale_increment = (
99
+ math.log(float(max_timescale) / float(min_timescale)) /
100
+ (num_timescales - 1))
101
+ inv_timescales = min_timescale * torch.exp(
102
+ torch.arange(num_timescales, dtype=torch.float) * -log_timescale_increment)
103
+ scaled_time = position.unsqueeze(0) * inv_timescales.unsqueeze(1)
104
+ signal = torch.cat([torch.sin(scaled_time), torch.cos(scaled_time)], 0)
105
+ signal = F.pad(signal, [0, 0, 0, channels % 2])
106
+ signal = signal.view(1, channels, length)
107
+ return signal
108
+
109
+
110
+ def add_timing_signal_1d(x, min_timescale=1.0, max_timescale=1.0e4):
111
+ b, channels, length = x.size()
112
+ signal = get_timing_signal_1d(length, channels, min_timescale, max_timescale)
113
+ return x + signal.to(dtype=x.dtype, device=x.device)
114
+
115
+
116
+ def cat_timing_signal_1d(x, min_timescale=1.0, max_timescale=1.0e4, axis=1):
117
+ b, channels, length = x.size()
118
+ signal = get_timing_signal_1d(length, channels, min_timescale, max_timescale)
119
+ return torch.cat([x, signal.to(dtype=x.dtype, device=x.device)], axis)
120
+
121
+
122
+ def subsequent_mask(length):
123
+ mask = torch.tril(torch.ones(length, length)).unsqueeze(0).unsqueeze(0)
124
+ return mask
125
+
126
+
127
+ @torch.jit.script
128
+ def fused_add_tanh_sigmoid_multiply(input_a, input_b, n_channels):
129
+ n_channels_int = n_channels[0]
130
+ in_act = input_a + input_b
131
+ t_act = torch.tanh(in_act[:, :n_channels_int, :])
132
+ s_act = torch.sigmoid(in_act[:, n_channels_int:, :])
133
+ acts = t_act * s_act
134
+ return acts
135
+
136
+
137
+ def convert_pad_shape(pad_shape):
138
+ l = pad_shape[::-1]
139
+ pad_shape = [item for sublist in l for item in sublist]
140
+ return pad_shape
141
+
142
+
143
+ def shift_1d(x):
144
+ x = F.pad(x, convert_pad_shape([[0, 0], [0, 0], [1, 0]]))[:, :, :-1]
145
+ return x
146
+
147
+
148
+ def sequence_mask(length, max_length=None):
149
+ if max_length is None:
150
+ max_length = length.max()
151
+ x = torch.arange(max_length, dtype=length.dtype, device=length.device)
152
+ return x.unsqueeze(0) < length.unsqueeze(1)
153
+
154
+
155
+ def generate_path(duration, mask):
156
+ """
157
+ duration: [b, 1, t_x]
158
+ mask: [b, 1, t_y, t_x]
159
+ """
160
+ device = duration.device
161
+
162
+ b, _, t_y, t_x = mask.shape
163
+ cum_duration = torch.cumsum(duration, -1)
164
+
165
+ cum_duration_flat = cum_duration.view(b * t_x)
166
+ path = sequence_mask(cum_duration_flat, t_y).to(mask.dtype)
167
+ path = path.view(b, t_x, t_y)
168
+ path = path - F.pad(path, convert_pad_shape([[0, 0], [1, 0], [0, 0]]))[:, :-1]
169
+ path = path.unsqueeze(1).transpose(2,3) * mask
170
+ return path
171
+
172
+
173
+ def clip_grad_value_(parameters, clip_value, norm_type=2):
174
+ if isinstance(parameters, torch.Tensor):
175
+ parameters = [parameters]
176
+ parameters = list(filter(lambda p: p.grad is not None, parameters))
177
+ norm_type = float(norm_type)
178
+ if clip_value is not None:
179
+ clip_value = float(clip_value)
180
+
181
+ total_norm = 0
182
+ for p in parameters:
183
+ param_norm = p.grad.data.norm(norm_type)
184
+ total_norm += param_norm.item() ** norm_type
185
+ if clip_value is not None:
186
+ p.grad.data.clamp_(min=-clip_value, max=clip_value)
187
+ total_norm = total_norm ** (1. / norm_type)
188
+ return total_norm
modules/crepe.py ADDED
@@ -0,0 +1,327 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import Optional,Union
2
+ try:
3
+ from typing import Literal
4
+ except Exception as e:
5
+ from typing_extensions import Literal
6
+ import numpy as np
7
+ import torch
8
+ import torchcrepe
9
+ from torch import nn
10
+ from torch.nn import functional as F
11
+ import scipy
12
+
13
+ #from:https://github.com/fishaudio/fish-diffusion
14
+
15
+ def repeat_expand(
16
+ content: Union[torch.Tensor, np.ndarray], target_len: int, mode: str = "nearest"
17
+ ):
18
+ """Repeat content to target length.
19
+ This is a wrapper of torch.nn.functional.interpolate.
20
+
21
+ Args:
22
+ content (torch.Tensor): tensor
23
+ target_len (int): target length
24
+ mode (str, optional): interpolation mode. Defaults to "nearest".
25
+
26
+ Returns:
27
+ torch.Tensor: tensor
28
+ """
29
+
30
+ ndim = content.ndim
31
+
32
+ if content.ndim == 1:
33
+ content = content[None, None]
34
+ elif content.ndim == 2:
35
+ content = content[None]
36
+
37
+ assert content.ndim == 3
38
+
39
+ is_np = isinstance(content, np.ndarray)
40
+ if is_np:
41
+ content = torch.from_numpy(content)
42
+
43
+ results = torch.nn.functional.interpolate(content, size=target_len, mode=mode)
44
+
45
+ if is_np:
46
+ results = results.numpy()
47
+
48
+ if ndim == 1:
49
+ return results[0, 0]
50
+ elif ndim == 2:
51
+ return results[0]
52
+
53
+
54
+ class BasePitchExtractor:
55
+ def __init__(
56
+ self,
57
+ hop_length: int = 512,
58
+ f0_min: float = 50.0,
59
+ f0_max: float = 1100.0,
60
+ keep_zeros: bool = True,
61
+ ):
62
+ """Base pitch extractor.
63
+
64
+ Args:
65
+ hop_length (int, optional): Hop length. Defaults to 512.
66
+ f0_min (float, optional): Minimum f0. Defaults to 50.0.
67
+ f0_max (float, optional): Maximum f0. Defaults to 1100.0.
68
+ keep_zeros (bool, optional): Whether keep zeros in pitch. Defaults to True.
69
+ """
70
+
71
+ self.hop_length = hop_length
72
+ self.f0_min = f0_min
73
+ self.f0_max = f0_max
74
+ self.keep_zeros = keep_zeros
75
+
76
+ def __call__(self, x, sampling_rate=44100, pad_to=None):
77
+ raise NotImplementedError("BasePitchExtractor is not callable.")
78
+
79
+ def post_process(self, x, sampling_rate, f0, pad_to):
80
+ if isinstance(f0, np.ndarray):
81
+ f0 = torch.from_numpy(f0).float().to(x.device)
82
+
83
+ if pad_to is None:
84
+ return f0
85
+
86
+ f0 = repeat_expand(f0, pad_to)
87
+
88
+ if self.keep_zeros:
89
+ return f0
90
+
91
+ vuv_vector = torch.zeros_like(f0)
92
+ vuv_vector[f0 > 0.0] = 1.0
93
+ vuv_vector[f0 <= 0.0] = 0.0
94
+
95
+ # 去掉0频率, 并线性插值
96
+ nzindex = torch.nonzero(f0).squeeze()
97
+ f0 = torch.index_select(f0, dim=0, index=nzindex).cpu().numpy()
98
+ time_org = self.hop_length / sampling_rate * nzindex.cpu().numpy()
99
+ time_frame = np.arange(pad_to) * self.hop_length / sampling_rate
100
+
101
+ if f0.shape[0] <= 0:
102
+ return torch.zeros(pad_to, dtype=torch.float, device=x.device),torch.zeros(pad_to, dtype=torch.float, device=x.device)
103
+
104
+ if f0.shape[0] == 1:
105
+ return torch.ones(pad_to, dtype=torch.float, device=x.device) * f0[0],torch.ones(pad_to, dtype=torch.float, device=x.device)
106
+
107
+ # 大概可以用 torch 重写?
108
+ f0 = np.interp(time_frame, time_org, f0, left=f0[0], right=f0[-1])
109
+ vuv_vector = vuv_vector.cpu().numpy()
110
+ vuv_vector = np.ceil(scipy.ndimage.zoom(vuv_vector,pad_to/len(vuv_vector),order = 0))
111
+
112
+ return f0,vuv_vector
113
+
114
+
115
+ class MaskedAvgPool1d(nn.Module):
116
+ def __init__(
117
+ self, kernel_size: int, stride: Optional[int] = None, padding: Optional[int] = 0
118
+ ):
119
+ """An implementation of mean pooling that supports masked values.
120
+
121
+ Args:
122
+ kernel_size (int): The size of the median pooling window.
123
+ stride (int, optional): The stride of the median pooling window. Defaults to None.
124
+ padding (int, optional): The padding of the median pooling window. Defaults to 0.
125
+ """
126
+
127
+ super(MaskedAvgPool1d, self).__init__()
128
+ self.kernel_size = kernel_size
129
+ self.stride = stride or kernel_size
130
+ self.padding = padding
131
+
132
+ def forward(self, x, mask=None):
133
+ ndim = x.dim()
134
+ if ndim == 2:
135
+ x = x.unsqueeze(1)
136
+
137
+ assert (
138
+ x.dim() == 3
139
+ ), "Input tensor must have 2 or 3 dimensions (batch_size, channels, width)"
140
+
141
+ # Apply the mask by setting masked elements to zero, or make NaNs zero
142
+ if mask is None:
143
+ mask = ~torch.isnan(x)
144
+
145
+ # Ensure mask has the same shape as the input tensor
146
+ assert x.shape == mask.shape, "Input tensor and mask must have the same shape"
147
+
148
+ masked_x = torch.where(mask, x, torch.zeros_like(x))
149
+ # Create a ones kernel with the same number of channels as the input tensor
150
+ ones_kernel = torch.ones(x.size(1), 1, self.kernel_size, device=x.device)
151
+
152
+ # Perform sum pooling
153
+ sum_pooled = nn.functional.conv1d(
154
+ masked_x,
155
+ ones_kernel,
156
+ stride=self.stride,
157
+ padding=self.padding,
158
+ groups=x.size(1),
159
+ )
160
+
161
+ # Count the non-masked (valid) elements in each pooling window
162
+ valid_count = nn.functional.conv1d(
163
+ mask.float(),
164
+ ones_kernel,
165
+ stride=self.stride,
166
+ padding=self.padding,
167
+ groups=x.size(1),
168
+ )
169
+ valid_count = valid_count.clamp(min=1) # Avoid division by zero
170
+
171
+ # Perform masked average pooling
172
+ avg_pooled = sum_pooled / valid_count
173
+
174
+ # Fill zero values with NaNs
175
+ avg_pooled[avg_pooled == 0] = float("nan")
176
+
177
+ if ndim == 2:
178
+ return avg_pooled.squeeze(1)
179
+
180
+ return avg_pooled
181
+
182
+
183
+ class MaskedMedianPool1d(nn.Module):
184
+ def __init__(
185
+ self, kernel_size: int, stride: Optional[int] = None, padding: Optional[int] = 0
186
+ ):
187
+ """An implementation of median pooling that supports masked values.
188
+
189
+ This implementation is inspired by the median pooling implementation in
190
+ https://gist.github.com/rwightman/f2d3849281624be7c0f11c85c87c1598
191
+
192
+ Args:
193
+ kernel_size (int): The size of the median pooling window.
194
+ stride (int, optional): The stride of the median pooling window. Defaults to None.
195
+ padding (int, optional): The padding of the median pooling window. Defaults to 0.
196
+ """
197
+
198
+ super(MaskedMedianPool1d, self).__init__()
199
+ self.kernel_size = kernel_size
200
+ self.stride = stride or kernel_size
201
+ self.padding = padding
202
+
203
+ def forward(self, x, mask=None):
204
+ ndim = x.dim()
205
+ if ndim == 2:
206
+ x = x.unsqueeze(1)
207
+
208
+ assert (
209
+ x.dim() == 3
210
+ ), "Input tensor must have 2 or 3 dimensions (batch_size, channels, width)"
211
+
212
+ if mask is None:
213
+ mask = ~torch.isnan(x)
214
+
215
+ assert x.shape == mask.shape, "Input tensor and mask must have the same shape"
216
+
217
+ masked_x = torch.where(mask, x, torch.zeros_like(x))
218
+
219
+ x = F.pad(masked_x, (self.padding, self.padding), mode="reflect")
220
+ mask = F.pad(
221
+ mask.float(), (self.padding, self.padding), mode="constant", value=0
222
+ )
223
+
224
+ x = x.unfold(2, self.kernel_size, self.stride)
225
+ mask = mask.unfold(2, self.kernel_size, self.stride)
226
+
227
+ x = x.contiguous().view(x.size()[:3] + (-1,))
228
+ mask = mask.contiguous().view(mask.size()[:3] + (-1,)).to(x.device)
229
+
230
+ # Combine the mask with the input tensor
231
+ #x_masked = torch.where(mask.bool(), x, torch.fill_(torch.zeros_like(x),float("inf")))
232
+ x_masked = torch.where(mask.bool(), x, torch.FloatTensor([float("inf")]).to(x.device))
233
+
234
+ # Sort the masked tensor along the last dimension
235
+ x_sorted, _ = torch.sort(x_masked, dim=-1)
236
+
237
+ # Compute the count of non-masked (valid) values
238
+ valid_count = mask.sum(dim=-1)
239
+
240
+ # Calculate the index of the median value for each pooling window
241
+ median_idx = (torch.div((valid_count - 1), 2, rounding_mode='trunc')).clamp(min=0)
242
+
243
+ # Gather the median values using the calculated indices
244
+ median_pooled = x_sorted.gather(-1, median_idx.unsqueeze(-1).long()).squeeze(-1)
245
+
246
+ # Fill infinite values with NaNs
247
+ median_pooled[torch.isinf(median_pooled)] = float("nan")
248
+
249
+ if ndim == 2:
250
+ return median_pooled.squeeze(1)
251
+
252
+ return median_pooled
253
+
254
+
255
+ class CrepePitchExtractor(BasePitchExtractor):
256
+ def __init__(
257
+ self,
258
+ hop_length: int = 512,
259
+ f0_min: float = 50.0,
260
+ f0_max: float = 1100.0,
261
+ threshold: float = 0.05,
262
+ keep_zeros: bool = False,
263
+ device = None,
264
+ model: Literal["full", "tiny"] = "full",
265
+ use_fast_filters: bool = True,
266
+ ):
267
+ super().__init__(hop_length, f0_min, f0_max, keep_zeros)
268
+
269
+ self.threshold = threshold
270
+ self.model = model
271
+ self.use_fast_filters = use_fast_filters
272
+ self.hop_length = hop_length
273
+ if device is None:
274
+ self.dev = torch.device("cuda" if torch.cuda.is_available() else "cpu")
275
+ else:
276
+ self.dev = torch.device(device)
277
+ if self.use_fast_filters:
278
+ self.median_filter = MaskedMedianPool1d(3, 1, 1).to(device)
279
+ self.mean_filter = MaskedAvgPool1d(3, 1, 1).to(device)
280
+
281
+ def __call__(self, x, sampling_rate=44100, pad_to=None):
282
+ """Extract pitch using crepe.
283
+
284
+
285
+ Args:
286
+ x (torch.Tensor): Audio signal, shape (1, T).
287
+ sampling_rate (int, optional): Sampling rate. Defaults to 44100.
288
+ pad_to (int, optional): Pad to length. Defaults to None.
289
+
290
+ Returns:
291
+ torch.Tensor: Pitch, shape (T // hop_length,).
292
+ """
293
+
294
+ assert x.ndim == 2, f"Expected 2D tensor, got {x.ndim}D tensor."
295
+ assert x.shape[0] == 1, f"Expected 1 channel, got {x.shape[0]} channels."
296
+
297
+ x = x.to(self.dev)
298
+ f0, pd = torchcrepe.predict(
299
+ x,
300
+ sampling_rate,
301
+ self.hop_length,
302
+ self.f0_min,
303
+ self.f0_max,
304
+ pad=True,
305
+ model=self.model,
306
+ batch_size=1024,
307
+ device=x.device,
308
+ return_periodicity=True,
309
+ )
310
+
311
+ # Filter, remove silence, set uv threshold, refer to the original warehouse readme
312
+ if self.use_fast_filters:
313
+ pd = self.median_filter(pd)
314
+ else:
315
+ pd = torchcrepe.filter.median(pd, 3)
316
+
317
+ pd = torchcrepe.threshold.Silence(-60.0)(pd, x, sampling_rate, 512)
318
+ f0 = torchcrepe.threshold.At(self.threshold)(f0, pd)
319
+
320
+ if self.use_fast_filters:
321
+ f0 = self.mean_filter(f0)
322
+ else:
323
+ f0 = torchcrepe.filter.mean(f0, 3)
324
+
325
+ f0 = torch.where(torch.isnan(f0), torch.full_like(f0, 0), f0)[0]
326
+
327
+ return self.post_process(x, sampling_rate, f0, pad_to)
modules/enhancer.py ADDED
@@ -0,0 +1,105 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import torch
3
+ import torch.nn.functional as F
4
+ from vdecoder.nsf_hifigan.nvSTFT import STFT
5
+ from vdecoder.nsf_hifigan.models import load_model
6
+ from torchaudio.transforms import Resample
7
+
8
+ class Enhancer:
9
+ def __init__(self, enhancer_type, enhancer_ckpt, device=None):
10
+ if device is None:
11
+ device = 'cuda' if torch.cuda.is_available() else 'cpu'
12
+ self.device = device
13
+
14
+ if enhancer_type == 'nsf-hifigan':
15
+ self.enhancer = NsfHifiGAN(enhancer_ckpt, device=self.device)
16
+ else:
17
+ raise ValueError(f" [x] Unknown enhancer: {enhancer_type}")
18
+
19
+ self.resample_kernel = {}
20
+ self.enhancer_sample_rate = self.enhancer.sample_rate()
21
+ self.enhancer_hop_size = self.enhancer.hop_size()
22
+
23
+ def enhance(self,
24
+ audio, # 1, T
25
+ sample_rate,
26
+ f0, # 1, n_frames, 1
27
+ hop_size,
28
+ adaptive_key = 0,
29
+ silence_front = 0
30
+ ):
31
+ # enhancer start time
32
+ start_frame = int(silence_front * sample_rate / hop_size)
33
+ real_silence_front = start_frame * hop_size / sample_rate
34
+ audio = audio[:, int(np.round(real_silence_front * sample_rate)) : ]
35
+ f0 = f0[: , start_frame :, :]
36
+
37
+ # adaptive parameters
38
+ adaptive_factor = 2 ** ( -adaptive_key / 12)
39
+ adaptive_sample_rate = 100 * int(np.round(self.enhancer_sample_rate / adaptive_factor / 100))
40
+ real_factor = self.enhancer_sample_rate / adaptive_sample_rate
41
+
42
+ # resample the ddsp output
43
+ if sample_rate == adaptive_sample_rate:
44
+ audio_res = audio
45
+ else:
46
+ key_str = str(sample_rate) + str(adaptive_sample_rate)
47
+ if key_str not in self.resample_kernel:
48
+ self.resample_kernel[key_str] = Resample(sample_rate, adaptive_sample_rate, lowpass_filter_width = 128).to(self.device)
49
+ audio_res = self.resample_kernel[key_str](audio)
50
+
51
+ n_frames = int(audio_res.size(-1) // self.enhancer_hop_size + 1)
52
+
53
+ # resample f0
54
+ f0_np = f0.squeeze(0).squeeze(-1).cpu().numpy()
55
+ f0_np *= real_factor
56
+ time_org = (hop_size / sample_rate) * np.arange(len(f0_np)) / real_factor
57
+ time_frame = (self.enhancer_hop_size / self.enhancer_sample_rate) * np.arange(n_frames)
58
+ f0_res = np.interp(time_frame, time_org, f0_np, left=f0_np[0], right=f0_np[-1])
59
+ f0_res = torch.from_numpy(f0_res).unsqueeze(0).float().to(self.device) # 1, n_frames
60
+
61
+ # enhance
62
+ enhanced_audio, enhancer_sample_rate = self.enhancer(audio_res, f0_res)
63
+
64
+ # resample the enhanced output
65
+ if adaptive_factor != 0:
66
+ key_str = str(adaptive_sample_rate) + str(enhancer_sample_rate)
67
+ if key_str not in self.resample_kernel:
68
+ self.resample_kernel[key_str] = Resample(adaptive_sample_rate, enhancer_sample_rate, lowpass_filter_width = 128).to(self.device)
69
+ enhanced_audio = self.resample_kernel[key_str](enhanced_audio)
70
+
71
+ # pad the silence frames
72
+ if start_frame > 0:
73
+ enhanced_audio = F.pad(enhanced_audio, (int(np.round(enhancer_sample_rate * real_silence_front)), 0))
74
+
75
+ return enhanced_audio, enhancer_sample_rate
76
+
77
+
78
+ class NsfHifiGAN(torch.nn.Module):
79
+ def __init__(self, model_path, device=None):
80
+ super().__init__()
81
+ if device is None:
82
+ device = 'cuda' if torch.cuda.is_available() else 'cpu'
83
+ self.device = device
84
+ print('| Load HifiGAN: ', model_path)
85
+ self.model, self.h = load_model(model_path, device=self.device)
86
+
87
+ def sample_rate(self):
88
+ return self.h.sampling_rate
89
+
90
+ def hop_size(self):
91
+ return self.h.hop_size
92
+
93
+ def forward(self, audio, f0):
94
+ stft = STFT(
95
+ self.h.sampling_rate,
96
+ self.h.num_mels,
97
+ self.h.n_fft,
98
+ self.h.win_size,
99
+ self.h.hop_size,
100
+ self.h.fmin,
101
+ self.h.fmax)
102
+ with torch.no_grad():
103
+ mel = stft.get_mel(audio)
104
+ enhanced_audio = self.model(mel, f0[:,:mel.size(-1)]).view(-1)
105
+ return enhanced_audio, self.h.sampling_rate
modules/losses.py ADDED
@@ -0,0 +1,61 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from torch.nn import functional as F
3
+
4
+ import modules.commons as commons
5
+
6
+
7
+ def feature_loss(fmap_r, fmap_g):
8
+ loss = 0
9
+ for dr, dg in zip(fmap_r, fmap_g):
10
+ for rl, gl in zip(dr, dg):
11
+ rl = rl.float().detach()
12
+ gl = gl.float()
13
+ loss += torch.mean(torch.abs(rl - gl))
14
+
15
+ return loss * 2
16
+
17
+
18
+ def discriminator_loss(disc_real_outputs, disc_generated_outputs):
19
+ loss = 0
20
+ r_losses = []
21
+ g_losses = []
22
+ for dr, dg in zip(disc_real_outputs, disc_generated_outputs):
23
+ dr = dr.float()
24
+ dg = dg.float()
25
+ r_loss = torch.mean((1-dr)**2)
26
+ g_loss = torch.mean(dg**2)
27
+ loss += (r_loss + g_loss)
28
+ r_losses.append(r_loss.item())
29
+ g_losses.append(g_loss.item())
30
+
31
+ return loss, r_losses, g_losses
32
+
33
+
34
+ def generator_loss(disc_outputs):
35
+ loss = 0
36
+ gen_losses = []
37
+ for dg in disc_outputs:
38
+ dg = dg.float()
39
+ l = torch.mean((1-dg)**2)
40
+ gen_losses.append(l)
41
+ loss += l
42
+
43
+ return loss, gen_losses
44
+
45
+
46
+ def kl_loss(z_p, logs_q, m_p, logs_p, z_mask):
47
+ """
48
+ z_p, logs_q: [b, h, t_t]
49
+ m_p, logs_p: [b, h, t_t]
50
+ """
51
+ z_p = z_p.float()
52
+ logs_q = logs_q.float()
53
+ m_p = m_p.float()
54
+ logs_p = logs_p.float()
55
+ z_mask = z_mask.float()
56
+ #print(logs_p)
57
+ kl = logs_p - logs_q - 0.5
58
+ kl += 0.5 * ((z_p - m_p)**2) * torch.exp(-2. * logs_p)
59
+ kl = torch.sum(kl * z_mask)
60
+ l = kl / torch.sum(z_mask)
61
+ return l
modules/mel_processing.py ADDED
@@ -0,0 +1,112 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math
2
+ import os
3
+ import random
4
+ import torch
5
+ from torch import nn
6
+ import torch.nn.functional as F
7
+ import torch.utils.data
8
+ import numpy as np
9
+ import librosa
10
+ import librosa.util as librosa_util
11
+ from librosa.util import normalize, pad_center, tiny
12
+ from scipy.signal import get_window
13
+ from scipy.io.wavfile import read
14
+ from librosa.filters import mel as librosa_mel_fn
15
+
16
+ MAX_WAV_VALUE = 32768.0
17
+
18
+
19
+ def dynamic_range_compression_torch(x, C=1, clip_val=1e-5):
20
+ """
21
+ PARAMS
22
+ ------
23
+ C: compression factor
24
+ """
25
+ return torch.log(torch.clamp(x, min=clip_val) * C)
26
+
27
+
28
+ def dynamic_range_decompression_torch(x, C=1):
29
+ """
30
+ PARAMS
31
+ ------
32
+ C: compression factor used to compress
33
+ """
34
+ return torch.exp(x) / C
35
+
36
+
37
+ def spectral_normalize_torch(magnitudes):
38
+ output = dynamic_range_compression_torch(magnitudes)
39
+ return output
40
+
41
+
42
+ def spectral_de_normalize_torch(magnitudes):
43
+ output = dynamic_range_decompression_torch(magnitudes)
44
+ return output
45
+
46
+
47
+ mel_basis = {}
48
+ hann_window = {}
49
+
50
+
51
+ def spectrogram_torch(y, n_fft, sampling_rate, hop_size, win_size, center=False):
52
+ if torch.min(y) < -1.:
53
+ print('min value is ', torch.min(y))
54
+ if torch.max(y) > 1.:
55
+ print('max value is ', torch.max(y))
56
+
57
+ global hann_window
58
+ dtype_device = str(y.dtype) + '_' + str(y.device)
59
+ wnsize_dtype_device = str(win_size) + '_' + dtype_device
60
+ if wnsize_dtype_device not in hann_window:
61
+ hann_window[wnsize_dtype_device] = torch.hann_window(win_size).to(dtype=y.dtype, device=y.device)
62
+
63
+ y = torch.nn.functional.pad(y.unsqueeze(1), (int((n_fft-hop_size)/2), int((n_fft-hop_size)/2)), mode='reflect')
64
+ y = y.squeeze(1)
65
+
66
+ spec = torch.stft(y, n_fft, hop_length=hop_size, win_length=win_size, window=hann_window[wnsize_dtype_device],
67
+ center=center, pad_mode='reflect', normalized=False, onesided=True, return_complex=False)
68
+
69
+ spec = torch.sqrt(spec.pow(2).sum(-1) + 1e-6)
70
+ return spec
71
+
72
+
73
+ def spec_to_mel_torch(spec, n_fft, num_mels, sampling_rate, fmin, fmax):
74
+ global mel_basis
75
+ dtype_device = str(spec.dtype) + '_' + str(spec.device)
76
+ fmax_dtype_device = str(fmax) + '_' + dtype_device
77
+ if fmax_dtype_device not in mel_basis:
78
+ mel = librosa_mel_fn(sr=sampling_rate, n_fft=n_fft, n_mels=num_mels, fmin=fmin, fmax=fmax)
79
+ mel_basis[fmax_dtype_device] = torch.from_numpy(mel).to(dtype=spec.dtype, device=spec.device)
80
+ spec = torch.matmul(mel_basis[fmax_dtype_device], spec)
81
+ spec = spectral_normalize_torch(spec)
82
+ return spec
83
+
84
+
85
+ def mel_spectrogram_torch(y, n_fft, num_mels, sampling_rate, hop_size, win_size, fmin, fmax, center=False):
86
+ if torch.min(y) < -1.:
87
+ print('min value is ', torch.min(y))
88
+ if torch.max(y) > 1.:
89
+ print('max value is ', torch.max(y))
90
+
91
+ global mel_basis, hann_window
92
+ dtype_device = str(y.dtype) + '_' + str(y.device)
93
+ fmax_dtype_device = str(fmax) + '_' + dtype_device
94
+ wnsize_dtype_device = str(win_size) + '_' + dtype_device
95
+ if fmax_dtype_device not in mel_basis:
96
+ mel = librosa_mel_fn(sr=sampling_rate, n_fft=n_fft, n_mels=num_mels, fmin=fmin, fmax=fmax)
97
+ mel_basis[fmax_dtype_device] = torch.from_numpy(mel).to(dtype=y.dtype, device=y.device)
98
+ if wnsize_dtype_device not in hann_window:
99
+ hann_window[wnsize_dtype_device] = torch.hann_window(win_size).to(dtype=y.dtype, device=y.device)
100
+
101
+ y = torch.nn.functional.pad(y.unsqueeze(1), (int((n_fft-hop_size)/2), int((n_fft-hop_size)/2)), mode='reflect')
102
+ y = y.squeeze(1)
103
+
104
+ spec = torch.stft(y, n_fft, hop_length=hop_size, win_length=win_size, window=hann_window[wnsize_dtype_device],
105
+ center=center, pad_mode='reflect', normalized=False, onesided=True, return_complex=False)
106
+
107
+ spec = torch.sqrt(spec.pow(2).sum(-1) + 1e-6)
108
+
109
+ spec = torch.matmul(mel_basis[fmax_dtype_device], spec)
110
+ spec = spectral_normalize_torch(spec)
111
+
112
+ return spec
modules/modules.py ADDED
@@ -0,0 +1,342 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import copy
2
+ import math
3
+ import numpy as np
4
+ import scipy
5
+ import torch
6
+ from torch import nn
7
+ from torch.nn import functional as F
8
+
9
+ from torch.nn import Conv1d, ConvTranspose1d, AvgPool1d, Conv2d
10
+ from torch.nn.utils import weight_norm, remove_weight_norm
11
+
12
+ import modules.commons as commons
13
+ from modules.commons import init_weights, get_padding
14
+
15
+
16
+ LRELU_SLOPE = 0.1
17
+
18
+
19
+ class LayerNorm(nn.Module):
20
+ def __init__(self, channels, eps=1e-5):
21
+ super().__init__()
22
+ self.channels = channels
23
+ self.eps = eps
24
+
25
+ self.gamma = nn.Parameter(torch.ones(channels))
26
+ self.beta = nn.Parameter(torch.zeros(channels))
27
+
28
+ def forward(self, x):
29
+ x = x.transpose(1, -1)
30
+ x = F.layer_norm(x, (self.channels,), self.gamma, self.beta, self.eps)
31
+ return x.transpose(1, -1)
32
+
33
+
34
+ class ConvReluNorm(nn.Module):
35
+ def __init__(self, in_channels, hidden_channels, out_channels, kernel_size, n_layers, p_dropout):
36
+ super().__init__()
37
+ self.in_channels = in_channels
38
+ self.hidden_channels = hidden_channels
39
+ self.out_channels = out_channels
40
+ self.kernel_size = kernel_size
41
+ self.n_layers = n_layers
42
+ self.p_dropout = p_dropout
43
+ assert n_layers > 1, "Number of layers should be larger than 0."
44
+
45
+ self.conv_layers = nn.ModuleList()
46
+ self.norm_layers = nn.ModuleList()
47
+ self.conv_layers.append(nn.Conv1d(in_channels, hidden_channels, kernel_size, padding=kernel_size//2))
48
+ self.norm_layers.append(LayerNorm(hidden_channels))
49
+ self.relu_drop = nn.Sequential(
50
+ nn.ReLU(),
51
+ nn.Dropout(p_dropout))
52
+ for _ in range(n_layers-1):
53
+ self.conv_layers.append(nn.Conv1d(hidden_channels, hidden_channels, kernel_size, padding=kernel_size//2))
54
+ self.norm_layers.append(LayerNorm(hidden_channels))
55
+ self.proj = nn.Conv1d(hidden_channels, out_channels, 1)
56
+ self.proj.weight.data.zero_()
57
+ self.proj.bias.data.zero_()
58
+
59
+ def forward(self, x, x_mask):
60
+ x_org = x
61
+ for i in range(self.n_layers):
62
+ x = self.conv_layers[i](x * x_mask)
63
+ x = self.norm_layers[i](x)
64
+ x = self.relu_drop(x)
65
+ x = x_org + self.proj(x)
66
+ return x * x_mask
67
+
68
+
69
+ class DDSConv(nn.Module):
70
+ """
71
+ Dialted and Depth-Separable Convolution
72
+ """
73
+ def __init__(self, channels, kernel_size, n_layers, p_dropout=0.):
74
+ super().__init__()
75
+ self.channels = channels
76
+ self.kernel_size = kernel_size
77
+ self.n_layers = n_layers
78
+ self.p_dropout = p_dropout
79
+
80
+ self.drop = nn.Dropout(p_dropout)
81
+ self.convs_sep = nn.ModuleList()
82
+ self.convs_1x1 = nn.ModuleList()
83
+ self.norms_1 = nn.ModuleList()
84
+ self.norms_2 = nn.ModuleList()
85
+ for i in range(n_layers):
86
+ dilation = kernel_size ** i
87
+ padding = (kernel_size * dilation - dilation) // 2
88
+ self.convs_sep.append(nn.Conv1d(channels, channels, kernel_size,
89
+ groups=channels, dilation=dilation, padding=padding
90
+ ))
91
+ self.convs_1x1.append(nn.Conv1d(channels, channels, 1))
92
+ self.norms_1.append(LayerNorm(channels))
93
+ self.norms_2.append(LayerNorm(channels))
94
+
95
+ def forward(self, x, x_mask, g=None):
96
+ if g is not None:
97
+ x = x + g
98
+ for i in range(self.n_layers):
99
+ y = self.convs_sep[i](x * x_mask)
100
+ y = self.norms_1[i](y)
101
+ y = F.gelu(y)
102
+ y = self.convs_1x1[i](y)
103
+ y = self.norms_2[i](y)
104
+ y = F.gelu(y)
105
+ y = self.drop(y)
106
+ x = x + y
107
+ return x * x_mask
108
+
109
+
110
+ class WN(torch.nn.Module):
111
+ def __init__(self, hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=0, p_dropout=0):
112
+ super(WN, self).__init__()
113
+ assert(kernel_size % 2 == 1)
114
+ self.hidden_channels =hidden_channels
115
+ self.kernel_size = kernel_size,
116
+ self.dilation_rate = dilation_rate
117
+ self.n_layers = n_layers
118
+ self.gin_channels = gin_channels
119
+ self.p_dropout = p_dropout
120
+
121
+ self.in_layers = torch.nn.ModuleList()
122
+ self.res_skip_layers = torch.nn.ModuleList()
123
+ self.drop = nn.Dropout(p_dropout)
124
+
125
+ if gin_channels != 0:
126
+ cond_layer = torch.nn.Conv1d(gin_channels, 2*hidden_channels*n_layers, 1)
127
+ self.cond_layer = torch.nn.utils.weight_norm(cond_layer, name='weight')
128
+
129
+ for i in range(n_layers):
130
+ dilation = dilation_rate ** i
131
+ padding = int((kernel_size * dilation - dilation) / 2)
132
+ in_layer = torch.nn.Conv1d(hidden_channels, 2*hidden_channels, kernel_size,
133
+ dilation=dilation, padding=padding)
134
+ in_layer = torch.nn.utils.weight_norm(in_layer, name='weight')
135
+ self.in_layers.append(in_layer)
136
+
137
+ # last one is not necessary
138
+ if i < n_layers - 1:
139
+ res_skip_channels = 2 * hidden_channels
140
+ else:
141
+ res_skip_channels = hidden_channels
142
+
143
+ res_skip_layer = torch.nn.Conv1d(hidden_channels, res_skip_channels, 1)
144
+ res_skip_layer = torch.nn.utils.weight_norm(res_skip_layer, name='weight')
145
+ self.res_skip_layers.append(res_skip_layer)
146
+
147
+ def forward(self, x, x_mask, g=None, **kwargs):
148
+ output = torch.zeros_like(x)
149
+ n_channels_tensor = torch.IntTensor([self.hidden_channels])
150
+
151
+ if g is not None:
152
+ g = self.cond_layer(g)
153
+
154
+ for i in range(self.n_layers):
155
+ x_in = self.in_layers[i](x)
156
+ if g is not None:
157
+ cond_offset = i * 2 * self.hidden_channels
158
+ g_l = g[:,cond_offset:cond_offset+2*self.hidden_channels,:]
159
+ else:
160
+ g_l = torch.zeros_like(x_in)
161
+
162
+ acts = commons.fused_add_tanh_sigmoid_multiply(
163
+ x_in,
164
+ g_l,
165
+ n_channels_tensor)
166
+ acts = self.drop(acts)
167
+
168
+ res_skip_acts = self.res_skip_layers[i](acts)
169
+ if i < self.n_layers - 1:
170
+ res_acts = res_skip_acts[:,:self.hidden_channels,:]
171
+ x = (x + res_acts) * x_mask
172
+ output = output + res_skip_acts[:,self.hidden_channels:,:]
173
+ else:
174
+ output = output + res_skip_acts
175
+ return output * x_mask
176
+
177
+ def remove_weight_norm(self):
178
+ if self.gin_channels != 0:
179
+ torch.nn.utils.remove_weight_norm(self.cond_layer)
180
+ for l in self.in_layers:
181
+ torch.nn.utils.remove_weight_norm(l)
182
+ for l in self.res_skip_layers:
183
+ torch.nn.utils.remove_weight_norm(l)
184
+
185
+
186
+ class ResBlock1(torch.nn.Module):
187
+ def __init__(self, channels, kernel_size=3, dilation=(1, 3, 5)):
188
+ super(ResBlock1, self).__init__()
189
+ self.convs1 = nn.ModuleList([
190
+ weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[0],
191
+ padding=get_padding(kernel_size, dilation[0]))),
192
+ weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[1],
193
+ padding=get_padding(kernel_size, dilation[1]))),
194
+ weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[2],
195
+ padding=get_padding(kernel_size, dilation[2])))
196
+ ])
197
+ self.convs1.apply(init_weights)
198
+
199
+ self.convs2 = nn.ModuleList([
200
+ weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
201
+ padding=get_padding(kernel_size, 1))),
202
+ weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
203
+ padding=get_padding(kernel_size, 1))),
204
+ weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
205
+ padding=get_padding(kernel_size, 1)))
206
+ ])
207
+ self.convs2.apply(init_weights)
208
+
209
+ def forward(self, x, x_mask=None):
210
+ for c1, c2 in zip(self.convs1, self.convs2):
211
+ xt = F.leaky_relu(x, LRELU_SLOPE)
212
+ if x_mask is not None:
213
+ xt = xt * x_mask
214
+ xt = c1(xt)
215
+ xt = F.leaky_relu(xt, LRELU_SLOPE)
216
+ if x_mask is not None:
217
+ xt = xt * x_mask
218
+ xt = c2(xt)
219
+ x = xt + x
220
+ if x_mask is not None:
221
+ x = x * x_mask
222
+ return x
223
+
224
+ def remove_weight_norm(self):
225
+ for l in self.convs1:
226
+ remove_weight_norm(l)
227
+ for l in self.convs2:
228
+ remove_weight_norm(l)
229
+
230
+
231
+ class ResBlock2(torch.nn.Module):
232
+ def __init__(self, channels, kernel_size=3, dilation=(1, 3)):
233
+ super(ResBlock2, self).__init__()
234
+ self.convs = nn.ModuleList([
235
+ weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[0],
236
+ padding=get_padding(kernel_size, dilation[0]))),
237
+ weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[1],
238
+ padding=get_padding(kernel_size, dilation[1])))
239
+ ])
240
+ self.convs.apply(init_weights)
241
+
242
+ def forward(self, x, x_mask=None):
243
+ for c in self.convs:
244
+ xt = F.leaky_relu(x, LRELU_SLOPE)
245
+ if x_mask is not None:
246
+ xt = xt * x_mask
247
+ xt = c(xt)
248
+ x = xt + x
249
+ if x_mask is not None:
250
+ x = x * x_mask
251
+ return x
252
+
253
+ def remove_weight_norm(self):
254
+ for l in self.convs:
255
+ remove_weight_norm(l)
256
+
257
+
258
+ class Log(nn.Module):
259
+ def forward(self, x, x_mask, reverse=False, **kwargs):
260
+ if not reverse:
261
+ y = torch.log(torch.clamp_min(x, 1e-5)) * x_mask
262
+ logdet = torch.sum(-y, [1, 2])
263
+ return y, logdet
264
+ else:
265
+ x = torch.exp(x) * x_mask
266
+ return x
267
+
268
+
269
+ class Flip(nn.Module):
270
+ def forward(self, x, *args, reverse=False, **kwargs):
271
+ x = torch.flip(x, [1])
272
+ if not reverse:
273
+ logdet = torch.zeros(x.size(0)).to(dtype=x.dtype, device=x.device)
274
+ return x, logdet
275
+ else:
276
+ return x
277
+
278
+
279
+ class ElementwiseAffine(nn.Module):
280
+ def __init__(self, channels):
281
+ super().__init__()
282
+ self.channels = channels
283
+ self.m = nn.Parameter(torch.zeros(channels,1))
284
+ self.logs = nn.Parameter(torch.zeros(channels,1))
285
+
286
+ def forward(self, x, x_mask, reverse=False, **kwargs):
287
+ if not reverse:
288
+ y = self.m + torch.exp(self.logs) * x
289
+ y = y * x_mask
290
+ logdet = torch.sum(self.logs * x_mask, [1,2])
291
+ return y, logdet
292
+ else:
293
+ x = (x - self.m) * torch.exp(-self.logs) * x_mask
294
+ return x
295
+
296
+
297
+ class ResidualCouplingLayer(nn.Module):
298
+ def __init__(self,
299
+ channels,
300
+ hidden_channels,
301
+ kernel_size,
302
+ dilation_rate,
303
+ n_layers,
304
+ p_dropout=0,
305
+ gin_channels=0,
306
+ mean_only=False):
307
+ assert channels % 2 == 0, "channels should be divisible by 2"
308
+ super().__init__()
309
+ self.channels = channels
310
+ self.hidden_channels = hidden_channels
311
+ self.kernel_size = kernel_size
312
+ self.dilation_rate = dilation_rate
313
+ self.n_layers = n_layers
314
+ self.half_channels = channels // 2
315
+ self.mean_only = mean_only
316
+
317
+ self.pre = nn.Conv1d(self.half_channels, hidden_channels, 1)
318
+ self.enc = WN(hidden_channels, kernel_size, dilation_rate, n_layers, p_dropout=p_dropout, gin_channels=gin_channels)
319
+ self.post = nn.Conv1d(hidden_channels, self.half_channels * (2 - mean_only), 1)
320
+ self.post.weight.data.zero_()
321
+ self.post.bias.data.zero_()
322
+
323
+ def forward(self, x, x_mask, g=None, reverse=False):
324
+ x0, x1 = torch.split(x, [self.half_channels]*2, 1)
325
+ h = self.pre(x0) * x_mask
326
+ h = self.enc(h, x_mask, g=g)
327
+ stats = self.post(h) * x_mask
328
+ if not self.mean_only:
329
+ m, logs = torch.split(stats, [self.half_channels]*2, 1)
330
+ else:
331
+ m = stats
332
+ logs = torch.zeros_like(m)
333
+
334
+ if not reverse:
335
+ x1 = m + x1 * torch.exp(logs) * x_mask
336
+ x = torch.cat([x0, x1], 1)
337
+ logdet = torch.sum(logs, [1,2])
338
+ return x, logdet
339
+ else:
340
+ x1 = (x1 - m) * torch.exp(-logs) * x_mask
341
+ x = torch.cat([x0, x1], 1)
342
+ return x
onnx_export.py ADDED
@@ -0,0 +1,54 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from onnxexport.model_onnx import SynthesizerTrn
3
+ import utils
4
+
5
+ def main(NetExport):
6
+ path = "SoVits4.0"
7
+ if NetExport:
8
+ device = torch.device("cpu")
9
+ hps = utils.get_hparams_from_file(f"checkpoints/{path}/config.json")
10
+ SVCVITS = SynthesizerTrn(
11
+ hps.data.filter_length // 2 + 1,
12
+ hps.train.segment_size // hps.data.hop_length,
13
+ **hps.model)
14
+ _ = utils.load_checkpoint(f"checkpoints/{path}/model.pth", SVCVITS, None)
15
+ _ = SVCVITS.eval().to(device)
16
+ for i in SVCVITS.parameters():
17
+ i.requires_grad = False
18
+
19
+ n_frame = 10
20
+ test_hidden_unit = torch.rand(1, n_frame, 256)
21
+ test_pitch = torch.rand(1, n_frame)
22
+ test_mel2ph = torch.arange(0, n_frame, dtype=torch.int64)[None] # torch.LongTensor([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]).unsqueeze(0)
23
+ test_uv = torch.ones(1, n_frame, dtype=torch.float32)
24
+ test_noise = torch.randn(1, 192, n_frame)
25
+ test_sid = torch.LongTensor([0])
26
+ input_names = ["c", "f0", "mel2ph", "uv", "noise", "sid"]
27
+ output_names = ["audio", ]
28
+
29
+ torch.onnx.export(SVCVITS,
30
+ (
31
+ test_hidden_unit.to(device),
32
+ test_pitch.to(device),
33
+ test_mel2ph.to(device),
34
+ test_uv.to(device),
35
+ test_noise.to(device),
36
+ test_sid.to(device)
37
+ ),
38
+ f"checkpoints/{path}/model.onnx",
39
+ dynamic_axes={
40
+ "c": [0, 1],
41
+ "f0": [1],
42
+ "mel2ph": [1],
43
+ "uv": [1],
44
+ "noise": [2],
45
+ },
46
+ do_constant_folding=False,
47
+ opset_version=16,
48
+ verbose=False,
49
+ input_names=input_names,
50
+ output_names=output_names)
51
+
52
+
53
+ if __name__ == '__main__':
54
+ main(True)
onnxexport/model_onnx.py ADDED
@@ -0,0 +1,335 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from torch import nn
3
+ from torch.nn import functional as F
4
+
5
+ import modules.attentions as attentions
6
+ import modules.commons as commons
7
+ import modules.modules as modules
8
+
9
+ from torch.nn import Conv1d, ConvTranspose1d, AvgPool1d, Conv2d
10
+ from torch.nn.utils import weight_norm, remove_weight_norm, spectral_norm
11
+
12
+ import utils
13
+ from modules.commons import init_weights, get_padding
14
+ from vdecoder.hifigan.models import Generator
15
+ from utils import f0_to_coarse
16
+
17
+
18
+ class ResidualCouplingBlock(nn.Module):
19
+ def __init__(self,
20
+ channels,
21
+ hidden_channels,
22
+ kernel_size,
23
+ dilation_rate,
24
+ n_layers,
25
+ n_flows=4,
26
+ gin_channels=0):
27
+ super().__init__()
28
+ self.channels = channels
29
+ self.hidden_channels = hidden_channels
30
+ self.kernel_size = kernel_size
31
+ self.dilation_rate = dilation_rate
32
+ self.n_layers = n_layers
33
+ self.n_flows = n_flows
34
+ self.gin_channels = gin_channels
35
+
36
+ self.flows = nn.ModuleList()
37
+ for i in range(n_flows):
38
+ self.flows.append(
39
+ modules.ResidualCouplingLayer(channels, hidden_channels, kernel_size, dilation_rate, n_layers,
40
+ gin_channels=gin_channels, mean_only=True))
41
+ self.flows.append(modules.Flip())
42
+
43
+ def forward(self, x, x_mask, g=None, reverse=False):
44
+ if not reverse:
45
+ for flow in self.flows:
46
+ x, _ = flow(x, x_mask, g=g, reverse=reverse)
47
+ else:
48
+ for flow in reversed(self.flows):
49
+ x = flow(x, x_mask, g=g, reverse=reverse)
50
+ return x
51
+
52
+
53
+ class Encoder(nn.Module):
54
+ def __init__(self,
55
+ in_channels,
56
+ out_channels,
57
+ hidden_channels,
58
+ kernel_size,
59
+ dilation_rate,
60
+ n_layers,
61
+ gin_channels=0):
62
+ super().__init__()
63
+ self.in_channels = in_channels
64
+ self.out_channels = out_channels
65
+ self.hidden_channels = hidden_channels
66
+ self.kernel_size = kernel_size
67
+ self.dilation_rate = dilation_rate
68
+ self.n_layers = n_layers
69
+ self.gin_channels = gin_channels
70
+
71
+ self.pre = nn.Conv1d(in_channels, hidden_channels, 1)
72
+ self.enc = modules.WN(hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=gin_channels)
73
+ self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
74
+
75
+ def forward(self, x, x_lengths, g=None):
76
+ # print(x.shape,x_lengths.shape)
77
+ x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to(x.dtype)
78
+ x = self.pre(x) * x_mask
79
+ x = self.enc(x, x_mask, g=g)
80
+ stats = self.proj(x) * x_mask
81
+ m, logs = torch.split(stats, self.out_channels, dim=1)
82
+ z = (m + torch.randn_like(m) * torch.exp(logs)) * x_mask
83
+ return z, m, logs, x_mask
84
+
85
+
86
+ class TextEncoder(nn.Module):
87
+ def __init__(self,
88
+ out_channels,
89
+ hidden_channels,
90
+ kernel_size,
91
+ n_layers,
92
+ gin_channels=0,
93
+ filter_channels=None,
94
+ n_heads=None,
95
+ p_dropout=None):
96
+ super().__init__()
97
+ self.out_channels = out_channels
98
+ self.hidden_channels = hidden_channels
99
+ self.kernel_size = kernel_size
100
+ self.n_layers = n_layers
101
+ self.gin_channels = gin_channels
102
+ self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
103
+ self.f0_emb = nn.Embedding(256, hidden_channels)
104
+
105
+ self.enc_ = attentions.Encoder(
106
+ hidden_channels,
107
+ filter_channels,
108
+ n_heads,
109
+ n_layers,
110
+ kernel_size,
111
+ p_dropout)
112
+
113
+ def forward(self, x, x_mask, f0=None, z=None):
114
+ x = x + self.f0_emb(f0).transpose(1, 2)
115
+ x = self.enc_(x * x_mask, x_mask)
116
+ stats = self.proj(x) * x_mask
117
+ m, logs = torch.split(stats, self.out_channels, dim=1)
118
+ z = (m + z * torch.exp(logs)) * x_mask
119
+ return z, m, logs, x_mask
120
+
121
+
122
+ class DiscriminatorP(torch.nn.Module):
123
+ def __init__(self, period, kernel_size=5, stride=3, use_spectral_norm=False):
124
+ super(DiscriminatorP, self).__init__()
125
+ self.period = period
126
+ self.use_spectral_norm = use_spectral_norm
127
+ norm_f = weight_norm if use_spectral_norm == False else spectral_norm
128
+ self.convs = nn.ModuleList([
129
+ norm_f(Conv2d(1, 32, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
130
+ norm_f(Conv2d(32, 128, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
131
+ norm_f(Conv2d(128, 512, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
132
+ norm_f(Conv2d(512, 1024, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
133
+ norm_f(Conv2d(1024, 1024, (kernel_size, 1), 1, padding=(get_padding(kernel_size, 1), 0))),
134
+ ])
135
+ self.conv_post = norm_f(Conv2d(1024, 1, (3, 1), 1, padding=(1, 0)))
136
+
137
+ def forward(self, x):
138
+ fmap = []
139
+
140
+ # 1d to 2d
141
+ b, c, t = x.shape
142
+ if t % self.period != 0: # pad first
143
+ n_pad = self.period - (t % self.period)
144
+ x = F.pad(x, (0, n_pad), "reflect")
145
+ t = t + n_pad
146
+ x = x.view(b, c, t // self.period, self.period)
147
+
148
+ for l in self.convs:
149
+ x = l(x)
150
+ x = F.leaky_relu(x, modules.LRELU_SLOPE)
151
+ fmap.append(x)
152
+ x = self.conv_post(x)
153
+ fmap.append(x)
154
+ x = torch.flatten(x, 1, -1)
155
+
156
+ return x, fmap
157
+
158
+
159
+ class DiscriminatorS(torch.nn.Module):
160
+ def __init__(self, use_spectral_norm=False):
161
+ super(DiscriminatorS, self).__init__()
162
+ norm_f = weight_norm if use_spectral_norm == False else spectral_norm
163
+ self.convs = nn.ModuleList([
164
+ norm_f(Conv1d(1, 16, 15, 1, padding=7)),
165
+ norm_f(Conv1d(16, 64, 41, 4, groups=4, padding=20)),
166
+ norm_f(Conv1d(64, 256, 41, 4, groups=16, padding=20)),
167
+ norm_f(Conv1d(256, 1024, 41, 4, groups=64, padding=20)),
168
+ norm_f(Conv1d(1024, 1024, 41, 4, groups=256, padding=20)),
169
+ norm_f(Conv1d(1024, 1024, 5, 1, padding=2)),
170
+ ])
171
+ self.conv_post = norm_f(Conv1d(1024, 1, 3, 1, padding=1))
172
+
173
+ def forward(self, x):
174
+ fmap = []
175
+
176
+ for l in self.convs:
177
+ x = l(x)
178
+ x = F.leaky_relu(x, modules.LRELU_SLOPE)
179
+ fmap.append(x)
180
+ x = self.conv_post(x)
181
+ fmap.append(x)
182
+ x = torch.flatten(x, 1, -1)
183
+
184
+ return x, fmap
185
+
186
+
187
+ class F0Decoder(nn.Module):
188
+ def __init__(self,
189
+ out_channels,
190
+ hidden_channels,
191
+ filter_channels,
192
+ n_heads,
193
+ n_layers,
194
+ kernel_size,
195
+ p_dropout,
196
+ spk_channels=0):
197
+ super().__init__()
198
+ self.out_channels = out_channels
199
+ self.hidden_channels = hidden_channels
200
+ self.filter_channels = filter_channels
201
+ self.n_heads = n_heads
202
+ self.n_layers = n_layers
203
+ self.kernel_size = kernel_size
204
+ self.p_dropout = p_dropout
205
+ self.spk_channels = spk_channels
206
+
207
+ self.prenet = nn.Conv1d(hidden_channels, hidden_channels, 3, padding=1)
208
+ self.decoder = attentions.FFT(
209
+ hidden_channels,
210
+ filter_channels,
211
+ n_heads,
212
+ n_layers,
213
+ kernel_size,
214
+ p_dropout)
215
+ self.proj = nn.Conv1d(hidden_channels, out_channels, 1)
216
+ self.f0_prenet = nn.Conv1d(1, hidden_channels, 3, padding=1)
217
+ self.cond = nn.Conv1d(spk_channels, hidden_channels, 1)
218
+
219
+ def forward(self, x, norm_f0, x_mask, spk_emb=None):
220
+ x = torch.detach(x)
221
+ if spk_emb is not None:
222
+ x = x + self.cond(spk_emb)
223
+ x += self.f0_prenet(norm_f0)
224
+ x = self.prenet(x) * x_mask
225
+ x = self.decoder(x * x_mask, x_mask)
226
+ x = self.proj(x) * x_mask
227
+ return x
228
+
229
+
230
+ class SynthesizerTrn(nn.Module):
231
+ """
232
+ Synthesizer for Training
233
+ """
234
+
235
+ def __init__(self,
236
+ spec_channels,
237
+ segment_size,
238
+ inter_channels,
239
+ hidden_channels,
240
+ filter_channels,
241
+ n_heads,
242
+ n_layers,
243
+ kernel_size,
244
+ p_dropout,
245
+ resblock,
246
+ resblock_kernel_sizes,
247
+ resblock_dilation_sizes,
248
+ upsample_rates,
249
+ upsample_initial_channel,
250
+ upsample_kernel_sizes,
251
+ gin_channels,
252
+ ssl_dim,
253
+ n_speakers,
254
+ sampling_rate=44100,
255
+ **kwargs):
256
+ super().__init__()
257
+ self.spec_channels = spec_channels
258
+ self.inter_channels = inter_channels
259
+ self.hidden_channels = hidden_channels
260
+ self.filter_channels = filter_channels
261
+ self.n_heads = n_heads
262
+ self.n_layers = n_layers
263
+ self.kernel_size = kernel_size
264
+ self.p_dropout = p_dropout
265
+ self.resblock = resblock
266
+ self.resblock_kernel_sizes = resblock_kernel_sizes
267
+ self.resblock_dilation_sizes = resblock_dilation_sizes
268
+ self.upsample_rates = upsample_rates
269
+ self.upsample_initial_channel = upsample_initial_channel
270
+ self.upsample_kernel_sizes = upsample_kernel_sizes
271
+ self.segment_size = segment_size
272
+ self.gin_channels = gin_channels
273
+ self.ssl_dim = ssl_dim
274
+ self.emb_g = nn.Embedding(n_speakers, gin_channels)
275
+
276
+ self.pre = nn.Conv1d(ssl_dim, hidden_channels, kernel_size=5, padding=2)
277
+
278
+ self.enc_p = TextEncoder(
279
+ inter_channels,
280
+ hidden_channels,
281
+ filter_channels=filter_channels,
282
+ n_heads=n_heads,
283
+ n_layers=n_layers,
284
+ kernel_size=kernel_size,
285
+ p_dropout=p_dropout
286
+ )
287
+ hps = {
288
+ "sampling_rate": sampling_rate,
289
+ "inter_channels": inter_channels,
290
+ "resblock": resblock,
291
+ "resblock_kernel_sizes": resblock_kernel_sizes,
292
+ "resblock_dilation_sizes": resblock_dilation_sizes,
293
+ "upsample_rates": upsample_rates,
294
+ "upsample_initial_channel": upsample_initial_channel,
295
+ "upsample_kernel_sizes": upsample_kernel_sizes,
296
+ "gin_channels": gin_channels,
297
+ }
298
+ self.dec = Generator(h=hps)
299
+ self.enc_q = Encoder(spec_channels, inter_channels, hidden_channels, 5, 1, 16, gin_channels=gin_channels)
300
+ self.flow = ResidualCouplingBlock(inter_channels, hidden_channels, 5, 1, 4, gin_channels=gin_channels)
301
+ self.f0_decoder = F0Decoder(
302
+ 1,
303
+ hidden_channels,
304
+ filter_channels,
305
+ n_heads,
306
+ n_layers,
307
+ kernel_size,
308
+ p_dropout,
309
+ spk_channels=gin_channels
310
+ )
311
+ self.emb_uv = nn.Embedding(2, hidden_channels)
312
+ self.predict_f0 = False
313
+
314
+ def forward(self, c, f0, mel2ph, uv, noise=None, g=None):
315
+
316
+ decoder_inp = F.pad(c, [0, 0, 1, 0])
317
+ mel2ph_ = mel2ph.unsqueeze(2).repeat([1, 1, c.shape[-1]])
318
+ c = torch.gather(decoder_inp, 1, mel2ph_).transpose(1, 2) # [B, T, H]
319
+
320
+ c_lengths = (torch.ones(c.size(0)) * c.size(-1)).to(c.device)
321
+ g = g.unsqueeze(0)
322
+ g = self.emb_g(g).transpose(1, 2)
323
+ x_mask = torch.unsqueeze(commons.sequence_mask(c_lengths, c.size(2)), 1).to(c.dtype)
324
+ x = self.pre(c) * x_mask + self.emb_uv(uv.long()).transpose(1, 2)
325
+
326
+ if self.predict_f0:
327
+ lf0 = 2595. * torch.log10(1. + f0.unsqueeze(1) / 700.) / 500
328
+ norm_lf0 = utils.normalize_f0(lf0, x_mask, uv, random_scale=False)
329
+ pred_lf0 = self.f0_decoder(x, norm_lf0, x_mask, spk_emb=g)
330
+ f0 = (700 * (torch.pow(10, pred_lf0 * 500 / 2595) - 1)).squeeze(1)
331
+
332
+ z_p, m_p, logs_p, c_mask = self.enc_p(x, x_mask, f0=f0_to_coarse(f0), z=noise)
333
+ z = self.flow(z_p, c_mask, g=g, reverse=True)
334
+ o = self.dec(z * c_mask, g=g, f0=f0)
335
+ return o
preprocess_flist_config.py ADDED
@@ -0,0 +1,75 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import argparse
3
+ import re
4
+
5
+ from tqdm import tqdm
6
+ from random import shuffle
7
+ import json
8
+ import wave
9
+
10
+ config_template = json.load(open("configs_template/config_template.json"))
11
+
12
+ pattern = re.compile(r'^[\.a-zA-Z0-9_\/]+$')
13
+
14
+ def get_wav_duration(file_path):
15
+ with wave.open(file_path, 'rb') as wav_file:
16
+ # 获取音频帧数
17
+ n_frames = wav_file.getnframes()
18
+ # 获取采样率
19
+ framerate = wav_file.getframerate()
20
+ # 计算时长(秒)
21
+ duration = n_frames / float(framerate)
22
+ return duration
23
+
24
+ if __name__ == "__main__":
25
+ parser = argparse.ArgumentParser()
26
+ parser.add_argument("--train_list", type=str, default="./filelists/train.txt", help="path to train list")
27
+ parser.add_argument("--val_list", type=str, default="./filelists/val.txt", help="path to val list")
28
+ parser.add_argument("--source_dir", type=str, default="./dataset/44k", help="path to source dir")
29
+ args = parser.parse_args()
30
+
31
+ train = []
32
+ val = []
33
+ idx = 0
34
+ spk_dict = {}
35
+ spk_id = 0
36
+ for speaker in tqdm(os.listdir(args.source_dir)):
37
+ spk_dict[speaker] = spk_id
38
+ spk_id += 1
39
+ wavs = ["/".join([args.source_dir, speaker, i]) for i in os.listdir(os.path.join(args.source_dir, speaker))]
40
+ new_wavs = []
41
+ for file in wavs:
42
+ if not file.endswith("wav"):
43
+ continue
44
+ if not pattern.match(file):
45
+ print(f"warning:文件名{file}中包含非字母数字下划线,可能会导致错误。(也可能不会)")
46
+ if get_wav_duration(file) < 0.3:
47
+ print("skip too short audio:", file)
48
+ continue
49
+ new_wavs.append(file)
50
+ wavs = new_wavs
51
+ shuffle(wavs)
52
+ train += wavs[2:]
53
+ val += wavs[:2]
54
+
55
+ shuffle(train)
56
+ shuffle(val)
57
+
58
+ print("Writing", args.train_list)
59
+ with open(args.train_list, "w") as f:
60
+ for fname in tqdm(train):
61
+ wavpath = fname
62
+ f.write(wavpath + "\n")
63
+
64
+ print("Writing", args.val_list)
65
+ with open(args.val_list, "w") as f:
66
+ for fname in tqdm(val):
67
+ wavpath = fname
68
+ f.write(wavpath + "\n")
69
+
70
+ config_template["spk"] = spk_dict
71
+ config_template["model"]["n_speakers"] = spk_id
72
+
73
+ print("Writing configs/config.json")
74
+ with open("configs/config.json", "w") as f:
75
+ json.dump(config_template, f, indent=2)
preprocess_hubert_f0.py ADDED
@@ -0,0 +1,101 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math
2
+ import multiprocessing
3
+ import os
4
+ import argparse
5
+ from random import shuffle
6
+
7
+ import torch
8
+ from glob import glob
9
+ from tqdm import tqdm
10
+ from modules.mel_processing import spectrogram_torch
11
+
12
+ import utils
13
+ import logging
14
+
15
+ logging.getLogger("numba").setLevel(logging.WARNING)
16
+ import librosa
17
+ import numpy as np
18
+
19
+ hps = utils.get_hparams_from_file("configs/config.json")
20
+ sampling_rate = hps.data.sampling_rate
21
+ hop_length = hps.data.hop_length
22
+
23
+
24
+ def process_one(filename, hmodel):
25
+ # print(filename)
26
+ wav, sr = librosa.load(filename, sr=sampling_rate)
27
+ soft_path = filename + ".soft.pt"
28
+ if not os.path.exists(soft_path):
29
+ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
30
+ wav16k = librosa.resample(wav, orig_sr=sampling_rate, target_sr=16000)
31
+ wav16k = torch.from_numpy(wav16k).to(device)
32
+ c = utils.get_hubert_content(hmodel, wav_16k_tensor=wav16k)
33
+ torch.save(c.cpu(), soft_path)
34
+
35
+ f0_path = filename + ".f0.npy"
36
+ if not os.path.exists(f0_path):
37
+ f0 = utils.compute_f0_dio(
38
+ wav, sampling_rate=sampling_rate, hop_length=hop_length
39
+ )
40
+ np.save(f0_path, f0)
41
+
42
+ spec_path = filename.replace(".wav", ".spec.pt")
43
+ if not os.path.exists(spec_path):
44
+ # Process spectrogram
45
+ # The following code can't be replaced by torch.FloatTensor(wav)
46
+ # because load_wav_to_torch return a tensor that need to be normalized
47
+
48
+ audio, sr = utils.load_wav_to_torch(filename)
49
+ if sr != hps.data.sampling_rate:
50
+ raise ValueError(
51
+ "{} SR doesn't match target {} SR".format(
52
+ sr, hps.data.sampling_rate
53
+ )
54
+ )
55
+
56
+ audio_norm = audio / hps.data.max_wav_value
57
+ audio_norm = audio_norm.unsqueeze(0)
58
+
59
+ spec = spectrogram_torch(
60
+ audio_norm,
61
+ hps.data.filter_length,
62
+ hps.data.sampling_rate,
63
+ hps.data.hop_length,
64
+ hps.data.win_length,
65
+ center=False,
66
+ )
67
+ spec = torch.squeeze(spec, 0)
68
+ torch.save(spec, spec_path)
69
+
70
+
71
+ def process_batch(filenames):
72
+ print("Loading hubert for content...")
73
+ device = "cuda" if torch.cuda.is_available() else "cpu"
74
+ hmodel = utils.get_hubert_model().to(device)
75
+ print("Loaded hubert.")
76
+ for filename in tqdm(filenames):
77
+ process_one(filename, hmodel)
78
+
79
+
80
+ if __name__ == "__main__":
81
+ parser = argparse.ArgumentParser()
82
+ parser.add_argument(
83
+ "--in_dir", type=str, default="dataset/44k", help="path to input dir"
84
+ )
85
+
86
+ args = parser.parse_args()
87
+ filenames = glob(f"{args.in_dir}/*/*.wav", recursive=True) # [:10]
88
+ shuffle(filenames)
89
+ multiprocessing.set_start_method("spawn", force=True)
90
+
91
+ num_processes = 1
92
+ chunk_size = int(math.ceil(len(filenames) / num_processes))
93
+ chunks = [
94
+ filenames[i : i + chunk_size] for i in range(0, len(filenames), chunk_size)
95
+ ]
96
+ print([len(c) for c in chunks])
97
+ processes = [
98
+ multiprocessing.Process(target=process_batch, args=(chunk,)) for chunk in chunks
99
+ ]
100
+ for p in processes:
101
+ p.start()
pretrain/nsf_hifigan/put_nsf_hifigan_ckpt_here ADDED
File without changes
raw/put_raw_wav_here ADDED
File without changes
requirements.txt ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Flask
2
+ Flask_Cors
3
+ gradio
4
+ numpy==1.23.0
5
+ pyworld==0.2.5
6
+ scipy==1.10.0
7
+ SoundFile==0.12.1
8
+ torch==1.13.1
9
+ torchaudio==0.13.1
10
+ torchcrepe
11
+ tqdm
12
+ scikit-maad
13
+ praat-parselmouth
14
+ onnx
15
+ onnxsim
16
+ onnxoptimizer
17
+ fairseq==0.12.2
18
+ librosa==0.9.1
19
+ tensorboard
20
+ tensorboardX
21
+ edge_tts
requirements_win.txt ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ librosa==0.9.1
2
+ fairseq==0.12.2
3
+ Flask==2.1.2
4
+ Flask_Cors==3.0.10
5
+ gradio
6
+ numpy
7
+ playsound==1.3.0
8
+ PyAudio==0.2.12
9
+ pydub==0.25.1
10
+ pyworld==0.3.0
11
+ requests==2.28.1
12
+ scipy==1.7.3
13
+ sounddevice==0.4.5
14
+ SoundFile==0.10.3.post1
15
+ starlette==0.19.1
16
+ tqdm==4.63.0
17
+ torchcrepe
18
+ scikit-maad
19
+ praat-parselmouth
20
+ onnx
21
+ onnxsim
22
+ onnxoptimizer
23
+ tensorboardX
24
+ edge_tts
resample.py ADDED
@@ -0,0 +1,48 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import argparse
3
+ import librosa
4
+ import numpy as np
5
+ from multiprocessing import Pool, cpu_count
6
+ from scipy.io import wavfile
7
+ from tqdm import tqdm
8
+
9
+
10
+ def process(item):
11
+ spkdir, wav_name, args = item
12
+ # speaker 's5', 'p280', 'p315' are excluded,
13
+ speaker = spkdir.replace("\\", "/").split("/")[-1]
14
+ wav_path = os.path.join(args.in_dir, speaker, wav_name)
15
+ if os.path.exists(wav_path) and '.wav' in wav_path:
16
+ os.makedirs(os.path.join(args.out_dir2, speaker), exist_ok=True)
17
+ wav, sr = librosa.load(wav_path, sr=None)
18
+ wav, _ = librosa.effects.trim(wav, top_db=20)
19
+ peak = np.abs(wav).max()
20
+ if peak > 1.0:
21
+ wav = 0.98 * wav / peak
22
+ wav2 = librosa.resample(wav, orig_sr=sr, target_sr=args.sr2)
23
+ wav2 /= max(wav2.max(), -wav2.min())
24
+ save_name = wav_name
25
+ save_path2 = os.path.join(args.out_dir2, speaker, save_name)
26
+ wavfile.write(
27
+ save_path2,
28
+ args.sr2,
29
+ (wav2 * np.iinfo(np.int16).max).astype(np.int16)
30
+ )
31
+
32
+
33
+
34
+ if __name__ == "__main__":
35
+ parser = argparse.ArgumentParser()
36
+ parser.add_argument("--sr2", type=int, default=44100, help="sampling rate")
37
+ parser.add_argument("--in_dir", type=str, default="./dataset_raw", help="path to source dir")
38
+ parser.add_argument("--out_dir2", type=str, default="./dataset/44k", help="path to target dir")
39
+ args = parser.parse_args()
40
+ processs = 30 if cpu_count() > 60 else (cpu_count()-2 if cpu_count() > 4 else 1)
41
+ pool = Pool(processes=processs)
42
+
43
+ for speaker in os.listdir(args.in_dir):
44
+ spk_dir = os.path.join(args.in_dir, speaker)
45
+ if os.path.isdir(spk_dir):
46
+ print(spk_dir)
47
+ for _ in tqdm(pool.imap_unordered(process, [(spk_dir, i, args) for i in os.listdir(spk_dir) if i.endswith("wav")])):
48
+ pass
train.py ADDED
@@ -0,0 +1,315 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import logging
2
+ import multiprocessing
3
+ import time
4
+
5
+ logging.getLogger('matplotlib').setLevel(logging.WARNING)
6
+ logging.getLogger('numba').setLevel(logging.WARNING)
7
+
8
+ import os
9
+ import json
10
+ import argparse
11
+ import itertools
12
+ import math
13
+ import torch
14
+ from torch import nn, optim
15
+ from torch.nn import functional as F
16
+ from torch.utils.data import DataLoader
17
+ from torch.utils.tensorboard import SummaryWriter
18
+ import torch.multiprocessing as mp
19
+ import torch.distributed as dist
20
+ from torch.nn.parallel import DistributedDataParallel as DDP
21
+ from torch.cuda.amp import autocast, GradScaler
22
+
23
+ import modules.commons as commons
24
+ import utils
25
+ from data_utils import TextAudioSpeakerLoader, TextAudioCollate
26
+ from models import (
27
+ SynthesizerTrn,
28
+ MultiPeriodDiscriminator,
29
+ )
30
+ from modules.losses import (
31
+ kl_loss,
32
+ generator_loss, discriminator_loss, feature_loss
33
+ )
34
+
35
+ from modules.mel_processing import mel_spectrogram_torch, spec_to_mel_torch
36
+
37
+ torch.backends.cudnn.benchmark = True
38
+ global_step = 0
39
+ start_time = time.time()
40
+
41
+ # os.environ['TORCH_DISTRIBUTED_DEBUG'] = 'INFO'
42
+
43
+
44
+ def main():
45
+ """Assume Single Node Multi GPUs Training Only"""
46
+ assert torch.cuda.is_available(), "CPU training is not allowed."
47
+ hps = utils.get_hparams()
48
+
49
+ n_gpus = torch.cuda.device_count()
50
+ os.environ['MASTER_ADDR'] = 'localhost'
51
+ os.environ['MASTER_PORT'] = hps.train.port
52
+
53
+ mp.spawn(run, nprocs=n_gpus, args=(n_gpus, hps,))
54
+
55
+
56
+ def run(rank, n_gpus, hps):
57
+ global global_step
58
+ if rank == 0:
59
+ logger = utils.get_logger(hps.model_dir)
60
+ logger.info(hps)
61
+ utils.check_git_hash(hps.model_dir)
62
+ writer = SummaryWriter(log_dir=hps.model_dir)
63
+ writer_eval = SummaryWriter(log_dir=os.path.join(hps.model_dir, "eval"))
64
+
65
+ # for pytorch on win, backend use gloo
66
+ dist.init_process_group(backend= 'gloo' if os.name == 'nt' else 'nccl', init_method='env://', world_size=n_gpus, rank=rank)
67
+ torch.manual_seed(hps.train.seed)
68
+ torch.cuda.set_device(rank)
69
+ collate_fn = TextAudioCollate()
70
+ all_in_mem = hps.train.all_in_mem # If you have enough memory, turn on this option to avoid disk IO and speed up training.
71
+ train_dataset = TextAudioSpeakerLoader(hps.data.training_files, hps, all_in_mem=all_in_mem)
72
+ num_workers = 5 if multiprocessing.cpu_count() > 4 else multiprocessing.cpu_count()
73
+ if all_in_mem:
74
+ num_workers = 0
75
+ train_loader = DataLoader(train_dataset, num_workers=num_workers, shuffle=False, pin_memory=True,
76
+ batch_size=hps.train.batch_size, collate_fn=collate_fn)
77
+ if rank == 0:
78
+ eval_dataset = TextAudioSpeakerLoader(hps.data.validation_files, hps, all_in_mem=all_in_mem)
79
+ eval_loader = DataLoader(eval_dataset, num_workers=1, shuffle=False,
80
+ batch_size=1, pin_memory=False,
81
+ drop_last=False, collate_fn=collate_fn)
82
+
83
+ net_g = SynthesizerTrn(
84
+ hps.data.filter_length // 2 + 1,
85
+ hps.train.segment_size // hps.data.hop_length,
86
+ **hps.model).cuda(rank)
87
+ net_d = MultiPeriodDiscriminator(hps.model.use_spectral_norm).cuda(rank)
88
+ optim_g = torch.optim.AdamW(
89
+ net_g.parameters(),
90
+ hps.train.learning_rate,
91
+ betas=hps.train.betas,
92
+ eps=hps.train.eps)
93
+ optim_d = torch.optim.AdamW(
94
+ net_d.parameters(),
95
+ hps.train.learning_rate,
96
+ betas=hps.train.betas,
97
+ eps=hps.train.eps)
98
+ net_g = DDP(net_g, device_ids=[rank]) # , find_unused_parameters=True)
99
+ net_d = DDP(net_d, device_ids=[rank])
100
+
101
+ skip_optimizer = False
102
+ try:
103
+ _, _, _, epoch_str = utils.load_checkpoint(utils.latest_checkpoint_path(hps.model_dir, "G_*.pth"), net_g,
104
+ optim_g, skip_optimizer)
105
+ _, _, _, epoch_str = utils.load_checkpoint(utils.latest_checkpoint_path(hps.model_dir, "D_*.pth"), net_d,
106
+ optim_d, skip_optimizer)
107
+ epoch_str = max(epoch_str, 1)
108
+ global_step = (epoch_str - 1) * len(train_loader)
109
+ except:
110
+ print("load old checkpoint failed...")
111
+ epoch_str = 1
112
+ global_step = 0
113
+ if skip_optimizer:
114
+ epoch_str = 1
115
+ global_step = 0
116
+
117
+ scheduler_g = torch.optim.lr_scheduler.ExponentialLR(optim_g, gamma=hps.train.lr_decay, last_epoch=epoch_str - 2)
118
+ scheduler_d = torch.optim.lr_scheduler.ExponentialLR(optim_d, gamma=hps.train.lr_decay, last_epoch=epoch_str - 2)
119
+
120
+ scaler = GradScaler(enabled=hps.train.fp16_run)
121
+
122
+ for epoch in range(epoch_str, hps.train.epochs + 1):
123
+ if rank == 0:
124
+ train_and_evaluate(rank, epoch, hps, [net_g, net_d], [optim_g, optim_d], [scheduler_g, scheduler_d], scaler,
125
+ [train_loader, eval_loader], logger, [writer, writer_eval])
126
+ else:
127
+ train_and_evaluate(rank, epoch, hps, [net_g, net_d], [optim_g, optim_d], [scheduler_g, scheduler_d], scaler,
128
+ [train_loader, None], None, None)
129
+ scheduler_g.step()
130
+ scheduler_d.step()
131
+
132
+
133
+ def train_and_evaluate(rank, epoch, hps, nets, optims, schedulers, scaler, loaders, logger, writers):
134
+ net_g, net_d = nets
135
+ optim_g, optim_d = optims
136
+ scheduler_g, scheduler_d = schedulers
137
+ train_loader, eval_loader = loaders
138
+ if writers is not None:
139
+ writer, writer_eval = writers
140
+
141
+ # train_loader.batch_sampler.set_epoch(epoch)
142
+ global global_step
143
+
144
+ net_g.train()
145
+ net_d.train()
146
+ for batch_idx, items in enumerate(train_loader):
147
+ c, f0, spec, y, spk, lengths, uv = items
148
+ g = spk.cuda(rank, non_blocking=True)
149
+ spec, y = spec.cuda(rank, non_blocking=True), y.cuda(rank, non_blocking=True)
150
+ c = c.cuda(rank, non_blocking=True)
151
+ f0 = f0.cuda(rank, non_blocking=True)
152
+ uv = uv.cuda(rank, non_blocking=True)
153
+ lengths = lengths.cuda(rank, non_blocking=True)
154
+ mel = spec_to_mel_torch(
155
+ spec,
156
+ hps.data.filter_length,
157
+ hps.data.n_mel_channels,
158
+ hps.data.sampling_rate,
159
+ hps.data.mel_fmin,
160
+ hps.data.mel_fmax)
161
+
162
+ with autocast(enabled=hps.train.fp16_run):
163
+ y_hat, ids_slice, z_mask, \
164
+ (z, z_p, m_p, logs_p, m_q, logs_q), pred_lf0, norm_lf0, lf0 = net_g(c, f0, uv, spec, g=g, c_lengths=lengths,
165
+ spec_lengths=lengths)
166
+
167
+ y_mel = commons.slice_segments(mel, ids_slice, hps.train.segment_size // hps.data.hop_length)
168
+ y_hat_mel = mel_spectrogram_torch(
169
+ y_hat.squeeze(1),
170
+ hps.data.filter_length,
171
+ hps.data.n_mel_channels,
172
+ hps.data.sampling_rate,
173
+ hps.data.hop_length,
174
+ hps.data.win_length,
175
+ hps.data.mel_fmin,
176
+ hps.data.mel_fmax
177
+ )
178
+ y = commons.slice_segments(y, ids_slice * hps.data.hop_length, hps.train.segment_size) # slice
179
+
180
+ # Discriminator
181
+ y_d_hat_r, y_d_hat_g, _, _ = net_d(y, y_hat.detach())
182
+
183
+ with autocast(enabled=False):
184
+ loss_disc, losses_disc_r, losses_disc_g = discriminator_loss(y_d_hat_r, y_d_hat_g)
185
+ loss_disc_all = loss_disc
186
+
187
+ optim_d.zero_grad()
188
+ scaler.scale(loss_disc_all).backward()
189
+ scaler.unscale_(optim_d)
190
+ grad_norm_d = commons.clip_grad_value_(net_d.parameters(), None)
191
+ scaler.step(optim_d)
192
+
193
+ with autocast(enabled=hps.train.fp16_run):
194
+ # Generator
195
+ y_d_hat_r, y_d_hat_g, fmap_r, fmap_g = net_d(y, y_hat)
196
+ with autocast(enabled=False):
197
+ loss_mel = F.l1_loss(y_mel, y_hat_mel) * hps.train.c_mel
198
+ loss_kl = kl_loss(z_p, logs_q, m_p, logs_p, z_mask) * hps.train.c_kl
199
+ loss_fm = feature_loss(fmap_r, fmap_g)
200
+ loss_gen, losses_gen = generator_loss(y_d_hat_g)
201
+ loss_lf0 = F.mse_loss(pred_lf0, lf0)
202
+ loss_gen_all = loss_gen + loss_fm + loss_mel + loss_kl + loss_lf0
203
+ optim_g.zero_grad()
204
+ scaler.scale(loss_gen_all).backward()
205
+ scaler.unscale_(optim_g)
206
+ grad_norm_g = commons.clip_grad_value_(net_g.parameters(), None)
207
+ scaler.step(optim_g)
208
+ scaler.update()
209
+
210
+ if rank == 0:
211
+ if global_step % hps.train.log_interval == 0:
212
+ lr = optim_g.param_groups[0]['lr']
213
+ losses = [loss_disc, loss_gen, loss_fm, loss_mel, loss_kl]
214
+ logger.info('Train Epoch: {} [{:.0f}%]'.format(
215
+ epoch,
216
+ 100. * batch_idx / len(train_loader)))
217
+ logger.info(f"Losses: {[x.item() for x in losses]}, step: {global_step}, lr: {lr}")
218
+
219
+ scalar_dict = {"loss/g/total": loss_gen_all, "loss/d/total": loss_disc_all, "learning_rate": lr,
220
+ "grad_norm_d": grad_norm_d, "grad_norm_g": grad_norm_g}
221
+ scalar_dict.update({"loss/g/fm": loss_fm, "loss/g/mel": loss_mel, "loss/g/kl": loss_kl,
222
+ "loss/g/lf0": loss_lf0})
223
+
224
+ # scalar_dict.update({"loss/g/{}".format(i): v for i, v in enumerate(losses_gen)})
225
+ # scalar_dict.update({"loss/d_r/{}".format(i): v for i, v in enumerate(losses_disc_r)})
226
+ # scalar_dict.update({"loss/d_g/{}".format(i): v for i, v in enumerate(losses_disc_g)})
227
+ image_dict = {
228
+ "slice/mel_org": utils.plot_spectrogram_to_numpy(y_mel[0].data.cpu().numpy()),
229
+ "slice/mel_gen": utils.plot_spectrogram_to_numpy(y_hat_mel[0].data.cpu().numpy()),
230
+ "all/mel": utils.plot_spectrogram_to_numpy(mel[0].data.cpu().numpy()),
231
+ "all/lf0": utils.plot_data_to_numpy(lf0[0, 0, :].cpu().numpy(),
232
+ pred_lf0[0, 0, :].detach().cpu().numpy()),
233
+ "all/norm_lf0": utils.plot_data_to_numpy(lf0[0, 0, :].cpu().numpy(),
234
+ norm_lf0[0, 0, :].detach().cpu().numpy())
235
+ }
236
+
237
+ utils.summarize(
238
+ writer=writer,
239
+ global_step=global_step,
240
+ images=image_dict,
241
+ scalars=scalar_dict
242
+ )
243
+
244
+ if global_step % hps.train.eval_interval == 0:
245
+ evaluate(hps, net_g, eval_loader, writer_eval)
246
+ utils.save_checkpoint(net_g, optim_g, hps.train.learning_rate, epoch,
247
+ os.path.join(hps.model_dir, "G_{}.pth".format(global_step)))
248
+ utils.save_checkpoint(net_d, optim_d, hps.train.learning_rate, epoch,
249
+ os.path.join(hps.model_dir, "D_{}.pth".format(global_step)))
250
+ keep_ckpts = getattr(hps.train, 'keep_ckpts', 0)
251
+ if keep_ckpts > 0:
252
+ utils.clean_checkpoints(path_to_models=hps.model_dir, n_ckpts_to_keep=keep_ckpts, sort_by_time=True)
253
+
254
+ global_step += 1
255
+
256
+ if rank == 0:
257
+ global start_time
258
+ now = time.time()
259
+ durtaion = format(now - start_time, '.2f')
260
+ logger.info(f'====> Epoch: {epoch}, cost {durtaion} s')
261
+ start_time = now
262
+
263
+
264
+ def evaluate(hps, generator, eval_loader, writer_eval):
265
+ generator.eval()
266
+ image_dict = {}
267
+ audio_dict = {}
268
+ with torch.no_grad():
269
+ for batch_idx, items in enumerate(eval_loader):
270
+ c, f0, spec, y, spk, _, uv = items
271
+ g = spk[:1].cuda(0)
272
+ spec, y = spec[:1].cuda(0), y[:1].cuda(0)
273
+ c = c[:1].cuda(0)
274
+ f0 = f0[:1].cuda(0)
275
+ uv= uv[:1].cuda(0)
276
+ mel = spec_to_mel_torch(
277
+ spec,
278
+ hps.data.filter_length,
279
+ hps.data.n_mel_channels,
280
+ hps.data.sampling_rate,
281
+ hps.data.mel_fmin,
282
+ hps.data.mel_fmax)
283
+ y_hat = generator.module.infer(c, f0, uv, g=g)
284
+
285
+ y_hat_mel = mel_spectrogram_torch(
286
+ y_hat.squeeze(1).float(),
287
+ hps.data.filter_length,
288
+ hps.data.n_mel_channels,
289
+ hps.data.sampling_rate,
290
+ hps.data.hop_length,
291
+ hps.data.win_length,
292
+ hps.data.mel_fmin,
293
+ hps.data.mel_fmax
294
+ )
295
+
296
+ audio_dict.update({
297
+ f"gen/audio_{batch_idx}": y_hat[0],
298
+ f"gt/audio_{batch_idx}": y[0]
299
+ })
300
+ image_dict.update({
301
+ f"gen/mel": utils.plot_spectrogram_to_numpy(y_hat_mel[0].cpu().numpy()),
302
+ "gt/mel": utils.plot_spectrogram_to_numpy(mel[0].cpu().numpy())
303
+ })
304
+ utils.summarize(
305
+ writer=writer_eval,
306
+ global_step=global_step,
307
+ images=image_dict,
308
+ audios=audio_dict,
309
+ audio_sampling_rate=hps.data.sampling_rate
310
+ )
311
+ generator.train()
312
+
313
+
314
+ if __name__ == "__main__":
315
+ main()
utils.py ADDED
@@ -0,0 +1,533 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import glob
3
+ import re
4
+ import sys
5
+ import argparse
6
+ import logging
7
+ import json
8
+ import subprocess
9
+ import warnings
10
+ import random
11
+ import functools
12
+
13
+ import librosa
14
+ import numpy as np
15
+ from scipy.io.wavfile import read
16
+ import torch
17
+ from torch.nn import functional as F
18
+ from modules.commons import sequence_mask
19
+ from hubert import hubert_model
20
+
21
+ MATPLOTLIB_FLAG = False
22
+
23
+ logging.basicConfig(stream=sys.stdout, level=logging.DEBUG)
24
+ logger = logging
25
+
26
+ f0_bin = 256
27
+ f0_max = 1100.0
28
+ f0_min = 50.0
29
+ f0_mel_min = 1127 * np.log(1 + f0_min / 700)
30
+ f0_mel_max = 1127 * np.log(1 + f0_max / 700)
31
+
32
+
33
+ # def normalize_f0(f0, random_scale=True):
34
+ # f0_norm = f0.clone() # create a copy of the input Tensor
35
+ # batch_size, _, frame_length = f0_norm.shape
36
+ # for i in range(batch_size):
37
+ # means = torch.mean(f0_norm[i, 0, :])
38
+ # if random_scale:
39
+ # factor = random.uniform(0.8, 1.2)
40
+ # else:
41
+ # factor = 1
42
+ # f0_norm[i, 0, :] = (f0_norm[i, 0, :] - means) * factor
43
+ # return f0_norm
44
+ # def normalize_f0(f0, random_scale=True):
45
+ # means = torch.mean(f0[:, 0, :], dim=1, keepdim=True)
46
+ # if random_scale:
47
+ # factor = torch.Tensor(f0.shape[0],1).uniform_(0.8, 1.2).to(f0.device)
48
+ # else:
49
+ # factor = torch.ones(f0.shape[0], 1, 1).to(f0.device)
50
+ # f0_norm = (f0 - means.unsqueeze(-1)) * factor.unsqueeze(-1)
51
+ # return f0_norm
52
+
53
+ def deprecated(func):
54
+ """This is a decorator which can be used to mark functions
55
+ as deprecated. It will result in a warning being emitted
56
+ when the function is used."""
57
+ @functools.wraps(func)
58
+ def new_func(*args, **kwargs):
59
+ warnings.simplefilter('always', DeprecationWarning) # turn off filter
60
+ warnings.warn("Call to deprecated function {}.".format(func.__name__),
61
+ category=DeprecationWarning,
62
+ stacklevel=2)
63
+ warnings.simplefilter('default', DeprecationWarning) # reset filter
64
+ return func(*args, **kwargs)
65
+ return new_func
66
+
67
+ def normalize_f0(f0, x_mask, uv, random_scale=True):
68
+ # calculate means based on x_mask
69
+ uv_sum = torch.sum(uv, dim=1, keepdim=True)
70
+ uv_sum[uv_sum == 0] = 9999
71
+ means = torch.sum(f0[:, 0, :] * uv, dim=1, keepdim=True) / uv_sum
72
+
73
+ if random_scale:
74
+ factor = torch.Tensor(f0.shape[0], 1).uniform_(0.8, 1.2).to(f0.device)
75
+ else:
76
+ factor = torch.ones(f0.shape[0], 1).to(f0.device)
77
+ # normalize f0 based on means and factor
78
+ f0_norm = (f0 - means.unsqueeze(-1)) * factor.unsqueeze(-1)
79
+ if torch.isnan(f0_norm).any():
80
+ exit(0)
81
+ return f0_norm * x_mask
82
+
83
+ def compute_f0_uv_torchcrepe(wav_numpy, p_len=None, sampling_rate=44100, hop_length=512,device=None):
84
+ from modules.crepe import CrepePitchExtractor
85
+ x = wav_numpy
86
+ if p_len is None:
87
+ p_len = x.shape[0]//hop_length
88
+ else:
89
+ assert abs(p_len-x.shape[0]//hop_length) < 4, "pad length error"
90
+
91
+ f0_min = 50
92
+ f0_max = 1100
93
+ F0Creper = CrepePitchExtractor(hop_length=hop_length,f0_min=f0_min,f0_max=f0_max,device=device)
94
+ f0,uv = F0Creper(x[None,:].float(),sampling_rate,pad_to=p_len)
95
+ return f0,uv
96
+
97
+ def plot_data_to_numpy(x, y):
98
+ global MATPLOTLIB_FLAG
99
+ if not MATPLOTLIB_FLAG:
100
+ import matplotlib
101
+ matplotlib.use("Agg")
102
+ MATPLOTLIB_FLAG = True
103
+ mpl_logger = logging.getLogger('matplotlib')
104
+ mpl_logger.setLevel(logging.WARNING)
105
+ import matplotlib.pylab as plt
106
+ import numpy as np
107
+
108
+ fig, ax = plt.subplots(figsize=(10, 2))
109
+ plt.plot(x)
110
+ plt.plot(y)
111
+ plt.tight_layout()
112
+
113
+ fig.canvas.draw()
114
+ data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep='')
115
+ data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,))
116
+ plt.close()
117
+ return data
118
+
119
+
120
+
121
+ def interpolate_f0(f0):
122
+ '''
123
+ 对F0进行插值处理
124
+ '''
125
+
126
+ data = np.reshape(f0, (f0.size, 1))
127
+
128
+ vuv_vector = np.zeros((data.size, 1), dtype=np.float32)
129
+ vuv_vector[data > 0.0] = 1.0
130
+ vuv_vector[data <= 0.0] = 0.0
131
+
132
+ ip_data = data
133
+
134
+ frame_number = data.size
135
+ last_value = 0.0
136
+ for i in range(frame_number):
137
+ if data[i] <= 0.0:
138
+ j = i + 1
139
+ for j in range(i + 1, frame_number):
140
+ if data[j] > 0.0:
141
+ break
142
+ if j < frame_number - 1:
143
+ if last_value > 0.0:
144
+ step = (data[j] - data[i - 1]) / float(j - i)
145
+ for k in range(i, j):
146
+ ip_data[k] = data[i - 1] + step * (k - i + 1)
147
+ else:
148
+ for k in range(i, j):
149
+ ip_data[k] = data[j]
150
+ else:
151
+ for k in range(i, frame_number):
152
+ ip_data[k] = last_value
153
+ else:
154
+ ip_data[i] = data[i] #这里可能存在一个没有必要的拷贝
155
+ last_value = data[i]
156
+
157
+ return ip_data[:,0], vuv_vector[:,0]
158
+
159
+
160
+ def compute_f0_parselmouth(wav_numpy, p_len=None, sampling_rate=44100, hop_length=512):
161
+ import parselmouth
162
+ x = wav_numpy
163
+ if p_len is None:
164
+ p_len = x.shape[0]//hop_length
165
+ else:
166
+ assert abs(p_len-x.shape[0]//hop_length) < 4, "pad length error"
167
+ time_step = hop_length / sampling_rate * 1000
168
+ f0_min = 50
169
+ f0_max = 1100
170
+ f0 = parselmouth.Sound(x, sampling_rate).to_pitch_ac(
171
+ time_step=time_step / 1000, voicing_threshold=0.6,
172
+ pitch_floor=f0_min, pitch_ceiling=f0_max).selected_array['frequency']
173
+
174
+ pad_size=(p_len - len(f0) + 1) // 2
175
+ if(pad_size>0 or p_len - len(f0) - pad_size>0):
176
+ f0 = np.pad(f0,[[pad_size,p_len - len(f0) - pad_size]], mode='constant')
177
+ return f0
178
+
179
+ def resize_f0(x, target_len):
180
+ source = np.array(x)
181
+ source[source<0.001] = np.nan
182
+ target = np.interp(np.arange(0, len(source)*target_len, len(source))/ target_len, np.arange(0, len(source)), source)
183
+ res = np.nan_to_num(target)
184
+ return res
185
+
186
+ def compute_f0_dio(wav_numpy, p_len=None, sampling_rate=44100, hop_length=512):
187
+ import pyworld
188
+ if p_len is None:
189
+ p_len = wav_numpy.shape[0]//hop_length
190
+ f0, t = pyworld.dio(
191
+ wav_numpy.astype(np.double),
192
+ fs=sampling_rate,
193
+ f0_ceil=800,
194
+ frame_period=1000 * hop_length / sampling_rate,
195
+ )
196
+ f0 = pyworld.stonemask(wav_numpy.astype(np.double), f0, t, sampling_rate)
197
+ for index, pitch in enumerate(f0):
198
+ f0[index] = round(pitch, 1)
199
+ return resize_f0(f0, p_len)
200
+
201
+ def f0_to_coarse(f0):
202
+ is_torch = isinstance(f0, torch.Tensor)
203
+ f0_mel = 1127 * (1 + f0 / 700).log() if is_torch else 1127 * np.log(1 + f0 / 700)
204
+ f0_mel[f0_mel > 0] = (f0_mel[f0_mel > 0] - f0_mel_min) * (f0_bin - 2) / (f0_mel_max - f0_mel_min) + 1
205
+
206
+ f0_mel[f0_mel <= 1] = 1
207
+ f0_mel[f0_mel > f0_bin - 1] = f0_bin - 1
208
+ f0_coarse = (f0_mel + 0.5).long() if is_torch else np.rint(f0_mel).astype(np.int)
209
+ assert f0_coarse.max() <= 255 and f0_coarse.min() >= 1, (f0_coarse.max(), f0_coarse.min())
210
+ return f0_coarse
211
+
212
+
213
+ def get_hubert_model():
214
+ vec_path = "hubert/checkpoint_best_legacy_500.pt"
215
+ print("load model(s) from {}".format(vec_path))
216
+ from fairseq import checkpoint_utils
217
+ models, saved_cfg, task = checkpoint_utils.load_model_ensemble_and_task(
218
+ [vec_path],
219
+ suffix="",
220
+ )
221
+ model = models[0]
222
+ model.eval()
223
+ return model
224
+
225
+ def get_hubert_content(hmodel, wav_16k_tensor):
226
+ feats = wav_16k_tensor
227
+ if feats.dim() == 2: # double channels
228
+ feats = feats.mean(-1)
229
+ assert feats.dim() == 1, feats.dim()
230
+ feats = feats.view(1, -1)
231
+ padding_mask = torch.BoolTensor(feats.shape).fill_(False)
232
+ inputs = {
233
+ "source": feats.to(wav_16k_tensor.device),
234
+ "padding_mask": padding_mask.to(wav_16k_tensor.device),
235
+ "output_layer": 9, # layer 9
236
+ }
237
+ with torch.no_grad():
238
+ logits = hmodel.extract_features(**inputs)
239
+ feats = hmodel.final_proj(logits[0])
240
+ return feats.transpose(1, 2)
241
+
242
+
243
+ def get_content(cmodel, y):
244
+ with torch.no_grad():
245
+ c = cmodel.extract_features(y.squeeze(1))[0]
246
+ c = c.transpose(1, 2)
247
+ return c
248
+
249
+
250
+
251
+ def load_checkpoint(checkpoint_path, model, optimizer=None, skip_optimizer=False):
252
+ assert os.path.isfile(checkpoint_path)
253
+ checkpoint_dict = torch.load(checkpoint_path, map_location='cpu')
254
+ iteration = checkpoint_dict['iteration']
255
+ learning_rate = checkpoint_dict['learning_rate']
256
+ if optimizer is not None and not skip_optimizer and checkpoint_dict['optimizer'] is not None:
257
+ optimizer.load_state_dict(checkpoint_dict['optimizer'])
258
+ saved_state_dict = checkpoint_dict['model']
259
+ if hasattr(model, 'module'):
260
+ state_dict = model.module.state_dict()
261
+ else:
262
+ state_dict = model.state_dict()
263
+ new_state_dict = {}
264
+ for k, v in state_dict.items():
265
+ try:
266
+ # assert "dec" in k or "disc" in k
267
+ # print("load", k)
268
+ new_state_dict[k] = saved_state_dict[k]
269
+ assert saved_state_dict[k].shape == v.shape, (saved_state_dict[k].shape, v.shape)
270
+ except:
271
+ print("error, %s is not in the checkpoint" % k)
272
+ logger.info("%s is not in the checkpoint" % k)
273
+ new_state_dict[k] = v
274
+ if hasattr(model, 'module'):
275
+ model.module.load_state_dict(new_state_dict)
276
+ else:
277
+ model.load_state_dict(new_state_dict)
278
+ print("load ")
279
+ logger.info("Loaded checkpoint '{}' (iteration {})".format(
280
+ checkpoint_path, iteration))
281
+ return model, optimizer, learning_rate, iteration
282
+
283
+
284
+ def save_checkpoint(model, optimizer, learning_rate, iteration, checkpoint_path):
285
+ logger.info("Saving model and optimizer state at iteration {} to {}".format(
286
+ iteration, checkpoint_path))
287
+ if hasattr(model, 'module'):
288
+ state_dict = model.module.state_dict()
289
+ else:
290
+ state_dict = model.state_dict()
291
+ torch.save({'model': state_dict,
292
+ 'iteration': iteration,
293
+ 'optimizer': optimizer.state_dict(),
294
+ 'learning_rate': learning_rate}, checkpoint_path)
295
+
296
+ def clean_checkpoints(path_to_models='logs/44k/', n_ckpts_to_keep=2, sort_by_time=True):
297
+ """Freeing up space by deleting saved ckpts
298
+
299
+ Arguments:
300
+ path_to_models -- Path to the model directory
301
+ n_ckpts_to_keep -- Number of ckpts to keep, excluding G_0.pth and D_0.pth
302
+ sort_by_time -- True -> chronologically delete ckpts
303
+ False -> lexicographically delete ckpts
304
+ """
305
+ ckpts_files = [f for f in os.listdir(path_to_models) if os.path.isfile(os.path.join(path_to_models, f))]
306
+ name_key = (lambda _f: int(re.compile('._(\d+)\.pth').match(_f).group(1)))
307
+ time_key = (lambda _f: os.path.getmtime(os.path.join(path_to_models, _f)))
308
+ sort_key = time_key if sort_by_time else name_key
309
+ x_sorted = lambda _x: sorted([f for f in ckpts_files if f.startswith(_x) and not f.endswith('_0.pth')], key=sort_key)
310
+ to_del = [os.path.join(path_to_models, fn) for fn in
311
+ (x_sorted('G')[:-n_ckpts_to_keep] + x_sorted('D')[:-n_ckpts_to_keep])]
312
+ del_info = lambda fn: logger.info(f".. Free up space by deleting ckpt {fn}")
313
+ del_routine = lambda x: [os.remove(x), del_info(x)]
314
+ rs = [del_routine(fn) for fn in to_del]
315
+
316
+ def summarize(writer, global_step, scalars={}, histograms={}, images={}, audios={}, audio_sampling_rate=22050):
317
+ for k, v in scalars.items():
318
+ writer.add_scalar(k, v, global_step)
319
+ for k, v in histograms.items():
320
+ writer.add_histogram(k, v, global_step)
321
+ for k, v in images.items():
322
+ writer.add_image(k, v, global_step, dataformats='HWC')
323
+ for k, v in audios.items():
324
+ writer.add_audio(k, v, global_step, audio_sampling_rate)
325
+
326
+
327
+ def latest_checkpoint_path(dir_path, regex="G_*.pth"):
328
+ f_list = glob.glob(os.path.join(dir_path, regex))
329
+ f_list.sort(key=lambda f: int("".join(filter(str.isdigit, f))))
330
+ x = f_list[-1]
331
+ print(x)
332
+ return x
333
+
334
+
335
+ def plot_spectrogram_to_numpy(spectrogram):
336
+ global MATPLOTLIB_FLAG
337
+ if not MATPLOTLIB_FLAG:
338
+ import matplotlib
339
+ matplotlib.use("Agg")
340
+ MATPLOTLIB_FLAG = True
341
+ mpl_logger = logging.getLogger('matplotlib')
342
+ mpl_logger.setLevel(logging.WARNING)
343
+ import matplotlib.pylab as plt
344
+ import numpy as np
345
+
346
+ fig, ax = plt.subplots(figsize=(10,2))
347
+ im = ax.imshow(spectrogram, aspect="auto", origin="lower",
348
+ interpolation='none')
349
+ plt.colorbar(im, ax=ax)
350
+ plt.xlabel("Frames")
351
+ plt.ylabel("Channels")
352
+ plt.tight_layout()
353
+
354
+ fig.canvas.draw()
355
+ data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep='')
356
+ data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,))
357
+ plt.close()
358
+ return data
359
+
360
+
361
+ def plot_alignment_to_numpy(alignment, info=None):
362
+ global MATPLOTLIB_FLAG
363
+ if not MATPLOTLIB_FLAG:
364
+ import matplotlib
365
+ matplotlib.use("Agg")
366
+ MATPLOTLIB_FLAG = True
367
+ mpl_logger = logging.getLogger('matplotlib')
368
+ mpl_logger.setLevel(logging.WARNING)
369
+ import matplotlib.pylab as plt
370
+ import numpy as np
371
+
372
+ fig, ax = plt.subplots(figsize=(6, 4))
373
+ im = ax.imshow(alignment.transpose(), aspect='auto', origin='lower',
374
+ interpolation='none')
375
+ fig.colorbar(im, ax=ax)
376
+ xlabel = 'Decoder timestep'
377
+ if info is not None:
378
+ xlabel += '\n\n' + info
379
+ plt.xlabel(xlabel)
380
+ plt.ylabel('Encoder timestep')
381
+ plt.tight_layout()
382
+
383
+ fig.canvas.draw()
384
+ data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep='')
385
+ data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,))
386
+ plt.close()
387
+ return data
388
+
389
+
390
+ def load_wav_to_torch(full_path):
391
+ sampling_rate, data = read(full_path)
392
+ return torch.FloatTensor(data.astype(np.float32)), sampling_rate
393
+
394
+
395
+ def load_filepaths_and_text(filename, split="|"):
396
+ with open(filename, encoding='utf-8') as f:
397
+ filepaths_and_text = [line.strip().split(split) for line in f]
398
+ return filepaths_and_text
399
+
400
+
401
+ def get_hparams(init=True):
402
+ parser = argparse.ArgumentParser()
403
+ parser.add_argument('-c', '--config', type=str, default="./configs/base.json",
404
+ help='JSON file for configuration')
405
+ parser.add_argument('-m', '--model', type=str, required=True,
406
+ help='Model name')
407
+
408
+ args = parser.parse_args()
409
+ model_dir = os.path.join("./logs", args.model)
410
+
411
+ if not os.path.exists(model_dir):
412
+ os.makedirs(model_dir)
413
+
414
+ config_path = args.config
415
+ config_save_path = os.path.join(model_dir, "config.json")
416
+ if init:
417
+ with open(config_path, "r") as f:
418
+ data = f.read()
419
+ with open(config_save_path, "w") as f:
420
+ f.write(data)
421
+ else:
422
+ with open(config_save_path, "r") as f:
423
+ data = f.read()
424
+ config = json.loads(data)
425
+
426
+ hparams = HParams(**config)
427
+ hparams.model_dir = model_dir
428
+ return hparams
429
+
430
+
431
+ def get_hparams_from_dir(model_dir):
432
+ config_save_path = os.path.join(model_dir, "config.json")
433
+ with open(config_save_path, "r") as f:
434
+ data = f.read()
435
+ config = json.loads(data)
436
+
437
+ hparams =HParams(**config)
438
+ hparams.model_dir = model_dir
439
+ return hparams
440
+
441
+
442
+ def get_hparams_from_file(config_path):
443
+ with open(config_path, "r") as f:
444
+ data = f.read()
445
+ config = json.loads(data)
446
+
447
+ hparams =HParams(**config)
448
+ return hparams
449
+
450
+
451
+ def check_git_hash(model_dir):
452
+ source_dir = os.path.dirname(os.path.realpath(__file__))
453
+ if not os.path.exists(os.path.join(source_dir, ".git")):
454
+ logger.warn("{} is not a git repository, therefore hash value comparison will be ignored.".format(
455
+ source_dir
456
+ ))
457
+ return
458
+
459
+ cur_hash = subprocess.getoutput("git rev-parse HEAD")
460
+
461
+ path = os.path.join(model_dir, "githash")
462
+ if os.path.exists(path):
463
+ saved_hash = open(path).read()
464
+ if saved_hash != cur_hash:
465
+ logger.warn("git hash values are different. {}(saved) != {}(current)".format(
466
+ saved_hash[:8], cur_hash[:8]))
467
+ else:
468
+ open(path, "w").write(cur_hash)
469
+
470
+
471
+ def get_logger(model_dir, filename="train.log"):
472
+ global logger
473
+ logger = logging.getLogger(os.path.basename(model_dir))
474
+ logger.setLevel(logging.DEBUG)
475
+
476
+ formatter = logging.Formatter("%(asctime)s\t%(name)s\t%(levelname)s\t%(message)s")
477
+ if not os.path.exists(model_dir):
478
+ os.makedirs(model_dir)
479
+ h = logging.FileHandler(os.path.join(model_dir, filename))
480
+ h.setLevel(logging.DEBUG)
481
+ h.setFormatter(formatter)
482
+ logger.addHandler(h)
483
+ return logger
484
+
485
+
486
+ def repeat_expand_2d(content, target_len):
487
+ # content : [h, t]
488
+
489
+ src_len = content.shape[-1]
490
+ target = torch.zeros([content.shape[0], target_len], dtype=torch.float).to(content.device)
491
+ temp = torch.arange(src_len+1) * target_len / src_len
492
+ current_pos = 0
493
+ for i in range(target_len):
494
+ if i < temp[current_pos+1]:
495
+ target[:, i] = content[:, current_pos]
496
+ else:
497
+ current_pos += 1
498
+ target[:, i] = content[:, current_pos]
499
+
500
+ return target
501
+
502
+
503
+ class HParams():
504
+ def __init__(self, **kwargs):
505
+ for k, v in kwargs.items():
506
+ if type(v) == dict:
507
+ v = HParams(**v)
508
+ self[k] = v
509
+
510
+ def keys(self):
511
+ return self.__dict__.keys()
512
+
513
+ def items(self):
514
+ return self.__dict__.items()
515
+
516
+ def values(self):
517
+ return self.__dict__.values()
518
+
519
+ def __len__(self):
520
+ return len(self.__dict__)
521
+
522
+ def __getitem__(self, key):
523
+ return getattr(self, key)
524
+
525
+ def __setitem__(self, key, value):
526
+ return setattr(self, key, value)
527
+
528
+ def __contains__(self, key):
529
+ return key in self.__dict__
530
+
531
+ def __repr__(self):
532
+ return self.__dict__.__repr__()
533
+
vdecoder/__init__.py ADDED
File without changes