ASR-Arabic / app.py
muzammil-eds's picture
Update app.py
2910afc verified
raw
history blame
4.84 kB
import streamlit as st
import requests
import Levenshtein
import time
from io import BytesIO
import librosa
import torch
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
from audio_recorder_streamlit import audio_recorder
@st.cache_resource
def load_model():
MODEL_ID = "jonatasgrosman/wav2vec2-large-xlsr-53-arabic"
processor = Wav2Vec2Processor.from_pretrained(MODEL_ID)
model = Wav2Vec2ForCTC.from_pretrained(MODEL_ID)
return processor, model
processor, model = load_model()
def transcribe_audio_hf(audio_bytes):
"""
Transcribes speech from an audio file using a pretrained Wav2Vec2 model.
Args:
audio_bytes (bytes): Audio data in bytes.
Returns:
str: The transcription of the speech in the audio file.
"""
speech_array, sampling_rate = librosa.load(BytesIO(audio_bytes), sr=16000)
input_values = processor(speech_array, sampling_rate=sampling_rate, return_tensors="pt", padding=True).input_values
with torch.no_grad():
logits = model(input_values).logits
predicted_ids = torch.argmax(logits, dim=-1)
transcription = processor.batch_decode(predicted_ids)[0].strip()
return transcription
def levenshtein_similarity(transcription1, transcription2):
"""
Calculate the Levenshtein similarity between two transcriptions.
Args:
transcription1 (str): The first transcription.
transcription2 (str): The second transcription.
Returns:
float: A normalized similarity score between 0 and 1, where 1 indicates identical transcriptions.
"""
distance = Levenshtein.distance(transcription1, transcription2)
max_len = max(len(transcription1), len(transcription2))
return 1 - distance / max_len # Normalize to get similarity score
def evaluate_audio_similarity(original_audio_bytes, user_audio_bytes):
"""
Compares the similarity between the transcription of an original audio file and a user's audio file.
Args:
original_audio_bytes (bytes): Bytes of the original audio file.
user_audio_bytes (bytes): Bytes of the user's audio file.
Returns:
tuple: Transcriptions and Levenshtein similarity score.
"""
transcription_original = transcribe_audio_hf(original_audio_bytes)
transcription_user = transcribe_audio_hf(user_audio_bytes)
similarity_score_levenshtein = levenshtein_similarity(transcription_original, transcription_user)
return transcription_original, transcription_user, similarity_score_levenshtein
st.title("Audio Transcription and Similarity Checker")
# Choose between upload or record
st.sidebar.header("Input Method")
input_method = st.sidebar.selectbox("Choose Input Method", ["Record"])
original_audio_bytes = None
user_audio_bytes = None
if input_method == "Record":
st.write("Record or Upload Original Audio")
time.sleep(2)
original_audio_bytes = audio_recorder(key="original_audio_recorder", pause_threshold=30, icon_size='4x')
if not original_audio_bytes:
original_audio = st.file_uploader("Or Upload Original Audio", type=["wav", "mp3"])
if original_audio:
original_audio_bytes = original_audio.read()
if original_audio_bytes:
with st.spinner("Processing original audio..."):
st.audio(original_audio_bytes, format="audio/wav")
st.write("Record or Upload User Audio")
user_audio_bytes = audio_recorder(key="user_audio_recorder", pause_threshold=30, icon_size='4x')
if not user_audio_bytes:
user_audio = st.file_uploader("Or Upload User Audio", type=["wav", "mp3"])
if user_audio:
user_audio_bytes = user_audio.read()
if user_audio_bytes:
with st.spinner("Processing user audio..."):
st.audio(user_audio_bytes, format="audio/wav")
# Add a button to perform the test
if original_audio_bytes and user_audio_bytes:
if st.button("Perform Testing"):
with st.spinner("Performing transcription and similarity testing..."):
transcription_original, transcription_user, similarity_score = evaluate_audio_similarity(original_audio_bytes, user_audio_bytes)
# Display results
st.markdown("---")
st.subheader("Transcriptions and Similarity Score")
st.write(f"**Original Transcription:** {transcription_original}")
st.write(f"**User Transcription:** {transcription_user}")
st.write(f"**Levenshtein Similarity Score:** {similarity_score:.2f}")
if similarity_score > 0.8: # Adjust the threshold as needed
st.success("The pronunciation is likely correct based on transcription similarity.")
else:
st.error("The pronunciation may be incorrect based on transcription similarity.")