Spaces:
Sleeping
Sleeping
import streamlit as st | |
import requests | |
import Levenshtein | |
import time | |
from io import BytesIO | |
import librosa | |
import torch | |
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor | |
from audio_recorder_streamlit import audio_recorder | |
def load_model(): | |
MODEL_ID = "jonatasgrosman/wav2vec2-large-xlsr-53-arabic" | |
processor = Wav2Vec2Processor.from_pretrained(MODEL_ID) | |
model = Wav2Vec2ForCTC.from_pretrained(MODEL_ID) | |
return processor, model | |
processor, model = load_model() | |
def transcribe_audio_hf(audio_bytes): | |
""" | |
Transcribes speech from an audio file using a pretrained Wav2Vec2 model. | |
Args: | |
audio_bytes (bytes): Audio data in bytes. | |
Returns: | |
str: The transcription of the speech in the audio file. | |
""" | |
speech_array, sampling_rate = librosa.load(BytesIO(audio_bytes), sr=16000) | |
input_values = processor(speech_array, sampling_rate=sampling_rate, return_tensors="pt", padding=True).input_values | |
with torch.no_grad(): | |
logits = model(input_values).logits | |
predicted_ids = torch.argmax(logits, dim=-1) | |
transcription = processor.batch_decode(predicted_ids)[0].strip() | |
return transcription | |
def levenshtein_similarity(transcription1, transcription2): | |
""" | |
Calculate the Levenshtein similarity between two transcriptions. | |
Args: | |
transcription1 (str): The first transcription. | |
transcription2 (str): The second transcription. | |
Returns: | |
float: A normalized similarity score between 0 and 1, where 1 indicates identical transcriptions. | |
""" | |
distance = Levenshtein.distance(transcription1, transcription2) | |
max_len = max(len(transcription1), len(transcription2)) | |
return 1 - distance / max_len # Normalize to get similarity score | |
def evaluate_audio_similarity(original_audio_bytes, user_audio_bytes): | |
""" | |
Compares the similarity between the transcription of an original audio file and a user's audio file. | |
Args: | |
original_audio_bytes (bytes): Bytes of the original audio file. | |
user_audio_bytes (bytes): Bytes of the user's audio file. | |
Returns: | |
tuple: Transcriptions and Levenshtein similarity score. | |
""" | |
transcription_original = transcribe_audio_hf(original_audio_bytes) | |
transcription_user = transcribe_audio_hf(user_audio_bytes) | |
similarity_score_levenshtein = levenshtein_similarity(transcription_original, transcription_user) | |
return transcription_original, transcription_user, similarity_score_levenshtein | |
st.title("Audio Transcription and Similarity Checker") | |
# Choose between upload or record | |
st.sidebar.header("Input Method") | |
input_method = st.sidebar.selectbox("Choose Input Method", ["Record"]) | |
original_audio_bytes = None | |
user_audio_bytes = None | |
if input_method == "Record": | |
st.write("Record or Upload Original Audio") | |
time.sleep(2) | |
original_audio_bytes = audio_recorder(key="original_audio_recorder", pause_threshold=30, icon_size='4x') | |
if not original_audio_bytes: | |
original_audio = st.file_uploader("Or Upload Original Audio", type=["wav", "mp3"]) | |
if original_audio: | |
original_audio_bytes = original_audio.read() | |
if original_audio_bytes: | |
with st.spinner("Processing original audio..."): | |
st.audio(original_audio_bytes, format="audio/wav") | |
st.write("Record or Upload User Audio") | |
user_audio_bytes = audio_recorder(key="user_audio_recorder", pause_threshold=30, icon_size='4x') | |
if not user_audio_bytes: | |
user_audio = st.file_uploader("Or Upload User Audio", type=["wav", "mp3"]) | |
if user_audio: | |
user_audio_bytes = user_audio.read() | |
if user_audio_bytes: | |
with st.spinner("Processing user audio..."): | |
st.audio(user_audio_bytes, format="audio/wav") | |
# Add a button to perform the test | |
if original_audio_bytes and user_audio_bytes: | |
if st.button("Perform Testing"): | |
with st.spinner("Performing transcription and similarity testing..."): | |
transcription_original, transcription_user, similarity_score = evaluate_audio_similarity(original_audio_bytes, user_audio_bytes) | |
# Display results | |
st.markdown("---") | |
st.subheader("Transcriptions and Similarity Score") | |
st.write(f"**Original Transcription:** {transcription_original}") | |
st.write(f"**User Transcription:** {transcription_user}") | |
st.write(f"**Levenshtein Similarity Score:** {similarity_score:.2f}") | |
if similarity_score > 0.8: # Adjust the threshold as needed | |
st.success("The pronunciation is likely correct based on transcription similarity.") | |
else: | |
st.error("The pronunciation may be incorrect based on transcription similarity.") | |