Spaces:
Sleeping
Sleeping
muzammil-eds
commited on
Commit
•
18922c4
1
Parent(s):
6d75aa3
Update app.py
Browse files
app.py
CHANGED
@@ -18,13 +18,6 @@ def load_model():
|
|
18 |
processor, model = load_model()
|
19 |
|
20 |
def transcribe_audio_hf(audio_bytes):
|
21 |
-
"""
|
22 |
-
Transcribes speech from an audio file using a pretrained Wav2Vec2 model.
|
23 |
-
Args:
|
24 |
-
audio_bytes (bytes): Audio data in bytes.
|
25 |
-
Returns:
|
26 |
-
str: The transcription of the speech in the audio file.
|
27 |
-
"""
|
28 |
speech_array, sampling_rate = librosa.load(BytesIO(audio_bytes), sr=16000)
|
29 |
input_values = processor(speech_array, sampling_rate=sampling_rate, return_tensors="pt", padding=True).input_values
|
30 |
with torch.no_grad():
|
@@ -35,27 +28,11 @@ def transcribe_audio_hf(audio_bytes):
|
|
35 |
|
36 |
|
37 |
def levenshtein_similarity(transcription1, transcription2):
|
38 |
-
"""
|
39 |
-
Calculate the Levenshtein similarity between two transcriptions.
|
40 |
-
Args:
|
41 |
-
transcription1 (str): The first transcription.
|
42 |
-
transcription2 (str): The second transcription.
|
43 |
-
Returns:
|
44 |
-
float: A normalized similarity score between 0 and 1, where 1 indicates identical transcriptions.
|
45 |
-
"""
|
46 |
distance = Levenshtein.distance(transcription1, transcription2)
|
47 |
max_len = max(len(transcription1), len(transcription2))
|
48 |
return 1 - distance / max_len # Normalize to get similarity score
|
49 |
|
50 |
def evaluate_audio_similarity(original_audio_bytes, user_audio_bytes):
|
51 |
-
"""
|
52 |
-
Compares the similarity between the transcription of an original audio file and a user's audio file.
|
53 |
-
Args:
|
54 |
-
original_audio_bytes (bytes): Bytes of the original audio file.
|
55 |
-
user_audio_bytes (bytes): Bytes of the user's audio file.
|
56 |
-
Returns:
|
57 |
-
tuple: Transcriptions and Levenshtein similarity score.
|
58 |
-
"""
|
59 |
transcription_original = transcribe_audio_hf(original_audio_bytes)
|
60 |
transcription_user = transcribe_audio_hf(user_audio_bytes)
|
61 |
similarity_score_levenshtein = levenshtein_similarity(transcription_original, transcription_user)
|
@@ -70,13 +47,20 @@ input_method = st.sidebar.selectbox("Choose Input Method", ["Record"])
|
|
70 |
original_audio_bytes = None
|
71 |
user_audio_bytes = None
|
72 |
|
73 |
-
|
74 |
if input_method == "Record":
|
75 |
st.write("Record or Upload Original Audio")
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
80 |
|
81 |
if not original_audio_bytes:
|
82 |
original_audio = st.file_uploader("Or Upload Original Audio", type=["wav", "mp3"])
|
@@ -112,7 +96,7 @@ if input_method == "Record":
|
|
112 |
st.write(f"**User Transcription:** {transcription_user}")
|
113 |
st.write(f"**Levenshtein Similarity Score:** {similarity_score:.2f}")
|
114 |
|
115 |
-
if similarity_score > 0.8:
|
116 |
st.success("The pronunciation is likely correct based on transcription similarity.")
|
117 |
else:
|
118 |
st.error("The pronunciation may be incorrect based on transcription similarity.")
|
|
|
18 |
processor, model = load_model()
|
19 |
|
20 |
def transcribe_audio_hf(audio_bytes):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
speech_array, sampling_rate = librosa.load(BytesIO(audio_bytes), sr=16000)
|
22 |
input_values = processor(speech_array, sampling_rate=sampling_rate, return_tensors="pt", padding=True).input_values
|
23 |
with torch.no_grad():
|
|
|
28 |
|
29 |
|
30 |
def levenshtein_similarity(transcription1, transcription2):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
distance = Levenshtein.distance(transcription1, transcription2)
|
32 |
max_len = max(len(transcription1), len(transcription2))
|
33 |
return 1 - distance / max_len # Normalize to get similarity score
|
34 |
|
35 |
def evaluate_audio_similarity(original_audio_bytes, user_audio_bytes):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
transcription_original = transcribe_audio_hf(original_audio_bytes)
|
37 |
transcription_user = transcribe_audio_hf(user_audio_bytes)
|
38 |
similarity_score_levenshtein = levenshtein_similarity(transcription_original, transcription_user)
|
|
|
47 |
original_audio_bytes = None
|
48 |
user_audio_bytes = None
|
49 |
|
50 |
+
# Delay for initial setup to avoid first-click auto-stop issue
|
51 |
if input_method == "Record":
|
52 |
st.write("Record or Upload Original Audio")
|
53 |
+
|
54 |
+
# Introducing a delay for initial recording setup to avoid immediate stop issue
|
55 |
+
if 'initialized' not in st.session_state:
|
56 |
+
st.session_state['initialized'] = False
|
57 |
+
|
58 |
+
if not st.session_state['initialized']:
|
59 |
+
st.session_state['initialized'] = True
|
60 |
+
st.warning("Initializing recorder... Please wait a moment.")
|
61 |
+
time.sleep(2) # Add small delay before first-time recording
|
62 |
+
else:
|
63 |
+
original_audio_bytes = audio_recorder(key="original_audio_recorder", pause_threshold=30, icon_size='4x')
|
64 |
|
65 |
if not original_audio_bytes:
|
66 |
original_audio = st.file_uploader("Or Upload Original Audio", type=["wav", "mp3"])
|
|
|
96 |
st.write(f"**User Transcription:** {transcription_user}")
|
97 |
st.write(f"**Levenshtein Similarity Score:** {similarity_score:.2f}")
|
98 |
|
99 |
+
if similarity_score > 0.8:
|
100 |
st.success("The pronunciation is likely correct based on transcription similarity.")
|
101 |
else:
|
102 |
st.error("The pronunciation may be incorrect based on transcription similarity.")
|