Spaces:
Sleeping
Sleeping
import gradio as gr | |
import requests | |
import Levenshtein | |
import librosa | |
import torch | |
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor | |
def load_model(): | |
MODEL_ID = "jonatasgrosman/wav2vec2-large-xlsr-53-arabic" | |
processor = Wav2Vec2Processor.from_pretrained(MODEL_ID) | |
model = Wav2Vec2ForCTC.from_pretrained(MODEL_ID) | |
return processor, model | |
processor, model = load_model() | |
def transcribe_audio_hf(audio_path): | |
""" | |
Transcribes speech from an audio file using a pretrained Wav2Vec2 model. | |
Args: | |
audio_path (str): Path to the audio file. | |
Returns: | |
str: The transcription of the speech in the audio file. | |
""" | |
speech_array, sampling_rate = librosa.load(audio_path, sr=16000) | |
input_values = processor(speech_array, sampling_rate=sampling_rate, return_tensors="pt", padding=True).input_values | |
with torch.no_grad(): | |
logits = model(input_values).logits | |
predicted_ids = torch.argmax(logits, dim=-1) | |
transcription = processor.batch_decode(predicted_ids)[0].strip() | |
return transcription | |
def levenshtein_similarity(transcription1, transcription2): | |
""" | |
Calculate the Levenshtein similarity between two transcriptions. | |
Args: | |
transcription1 (str): The first transcription. | |
transcription2 (str): The second transcription. | |
Returns: | |
float: A normalized similarity score between 0 and 1, where 1 indicates identical transcriptions. | |
""" | |
distance = Levenshtein.distance(transcription1, transcription2) | |
max_len = max(len(transcription1), len(transcription2)) | |
return 1 - distance / max_len # Normalize to get similarity score | |
def evaluate_audio_similarity(original_audio, user_audio): | |
""" | |
Compares the similarity between the transcription of an original audio file and a user's audio file. | |
Args: | |
original_audio (str): Path to the original audio file. | |
user_audio (str): Path to the user's audio file. | |
Returns: | |
tuple: Transcriptions and Levenshtein similarity score. | |
""" | |
transcription_original = transcribe_audio_hf(original_audio) | |
transcription_user = transcribe_audio_hf(user_audio) | |
similarity_score_levenshtein = levenshtein_similarity(transcription_original, transcription_user) | |
return transcription_original, transcription_user, similarity_score_levenshtein | |
def perform_testing(original_audio, user_audio): | |
if original_audio is not None and user_audio is not None: | |
transcription_original, transcription_user, similarity_score = evaluate_audio_similarity(original_audio, user_audio) | |
return ( | |
f"**Original Transcription:** {transcription_original}", | |
f"**User Transcription:** {transcription_user}", | |
f"**Levenshtein Similarity Score:** {similarity_score:.2f}" | |
) | |
# Gradio Interface | |
with gr.Blocks() as app: | |
gr.Markdown("# Audio Transcription and Similarity Checker") | |
original_audio_upload = gr.Audio(label="Upload Original Audio", type="filepath") | |
user_audio_upload = gr.Audio(label="Upload User Audio", type="filepath") | |
upload_button = gr.Button("Perform Testing") | |
output_original_transcription = gr.Markdown() | |
output_user_transcription = gr.Markdown() | |
output_similarity_score = gr.Markdown() | |
upload_button.click( | |
perform_testing, | |
inputs=[original_audio_upload, user_audio_upload], | |
outputs=[output_original_transcription, output_user_transcription, output_similarity_score] | |
) | |
app.launch() | |