Spaces:
Sleeping
Sleeping
muzammil-eds
commited on
Commit
•
869504a
1
Parent(s):
83bef30
Update app.py
Browse files
app.py
CHANGED
@@ -1,32 +1,37 @@
|
|
1 |
import gradio as gr
|
2 |
import requests
|
3 |
-
import
|
4 |
-
import librosa
|
5 |
-
import torch
|
6 |
-
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
|
7 |
|
8 |
-
|
9 |
-
|
10 |
-
processor = Wav2Vec2Processor.from_pretrained(MODEL_ID)
|
11 |
-
model = Wav2Vec2ForCTC.from_pretrained(MODEL_ID)
|
12 |
-
return processor, model
|
13 |
|
14 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
|
16 |
def transcribe_audio_hf(audio_path):
|
17 |
"""
|
18 |
-
Transcribes
|
19 |
Args:
|
20 |
audio_path (str): Path to the audio file.
|
21 |
Returns:
|
22 |
-
str: The transcription
|
23 |
"""
|
24 |
-
|
25 |
-
|
26 |
-
with torch.no_grad():
|
27 |
-
logits = model(input_values).logits
|
28 |
-
predicted_ids = torch.argmax(logits, dim=-1)
|
29 |
-
transcription = processor.batch_decode(predicted_ids)[0].strip()
|
30 |
return transcription
|
31 |
|
32 |
def levenshtein_similarity(transcription1, transcription2):
|
@@ -38,6 +43,7 @@ def levenshtein_similarity(transcription1, transcription2):
|
|
38 |
Returns:
|
39 |
float: A normalized similarity score between 0 and 1, where 1 indicates identical transcriptions.
|
40 |
"""
|
|
|
41 |
distance = Levenshtein.distance(transcription1, transcription2)
|
42 |
max_len = max(len(transcription1), len(transcription2))
|
43 |
return 1 - distance / max_len # Normalize to get similarity score
|
@@ -67,19 +73,20 @@ def perform_testing(original_audio, user_audio):
|
|
67 |
|
68 |
# Gradio Interface
|
69 |
with gr.Blocks() as app:
|
70 |
-
gr.Markdown("# Audio Transcription and Similarity Checker")
|
71 |
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
|
|
78 |
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
|
85 |
app.launch()
|
|
|
1 |
import gradio as gr
|
2 |
import requests
|
3 |
+
import os
|
|
|
|
|
|
|
4 |
|
5 |
+
# API information for Hugging Face Inference API
|
6 |
+
API_URL = "https://api-inference.huggingface.co/models/jonatasgrosman/wav2vec2-large-xlsr-53-arabic"
|
|
|
|
|
|
|
7 |
|
8 |
+
# Fetch the API token from Hugging Face Secrets
|
9 |
+
hf_api_token = os.getenv("HF_API_TOKEN")
|
10 |
+
headers = {"Authorization": f"Bearer {hf_api_token}"}
|
11 |
+
|
12 |
+
def query(filename):
|
13 |
+
"""
|
14 |
+
Queries the Hugging Face API to transcribe audio from a file.
|
15 |
+
Args:
|
16 |
+
filename (str): Path to the audio file.
|
17 |
+
Returns:
|
18 |
+
dict: The response from the Hugging Face API with transcription.
|
19 |
+
"""
|
20 |
+
with open(filename, "rb") as f:
|
21 |
+
data = f.read()
|
22 |
+
response = requests.post(API_URL, headers=headers, data=data)
|
23 |
+
return response.json()
|
24 |
|
25 |
def transcribe_audio_hf(audio_path):
|
26 |
"""
|
27 |
+
Transcribes the audio using the Hugging Face Inference API.
|
28 |
Args:
|
29 |
audio_path (str): Path to the audio file.
|
30 |
Returns:
|
31 |
+
str: The transcription from the API.
|
32 |
"""
|
33 |
+
result = query(audio_path)
|
34 |
+
transcription = result.get('text', '').strip()
|
|
|
|
|
|
|
|
|
35 |
return transcription
|
36 |
|
37 |
def levenshtein_similarity(transcription1, transcription2):
|
|
|
43 |
Returns:
|
44 |
float: A normalized similarity score between 0 and 1, where 1 indicates identical transcriptions.
|
45 |
"""
|
46 |
+
import Levenshtein
|
47 |
distance = Levenshtein.distance(transcription1, transcription2)
|
48 |
max_len = max(len(transcription1), len(transcription2))
|
49 |
return 1 - distance / max_len # Normalize to get similarity score
|
|
|
73 |
|
74 |
# Gradio Interface
|
75 |
with gr.Blocks() as app:
|
76 |
+
gr.Markdown("# Audio Transcription and Similarity Checker using Hugging Face Inference API")
|
77 |
|
78 |
+
with gr.Tab("Upload"):
|
79 |
+
original_audio_upload = gr.Audio(label="Upload Original Audio", type="filepath")
|
80 |
+
user_audio_upload = gr.Audio(label="Upload User Audio", type="filepath")
|
81 |
+
upload_button = gr.Button("Perform Testing")
|
82 |
+
output_original_transcription = gr.Markdown()
|
83 |
+
output_user_transcription = gr.Markdown()
|
84 |
+
output_similarity_score = gr.Markdown()
|
85 |
|
86 |
+
upload_button.click(
|
87 |
+
perform_testing,
|
88 |
+
inputs=[original_audio_upload, user_audio_upload],
|
89 |
+
outputs=[output_original_transcription, output_user_transcription, output_similarity_score]
|
90 |
+
)
|
91 |
|
92 |
app.launch()
|