import streamlit as st import pandas as pd import sqlite3 from llama_index.core import StorageContext, load_index_from_storage from llama_index.llms.ollama import Ollama from llama_index.embeddings.huggingface import HuggingFaceEmbedding from llama_index.core import PromptTemplate import os version = 2.3 # Initialize the SQLite3 database conn = sqlite3.connect('qa.db') c = conn.cursor() # Update the table creation to include the version column c.execute('CREATE TABLE IF NOT EXISTS qa (question TEXT, answer TEXT, version REAL)') conn.commit() # Read the LLM Model Description from a file def read_description_from_file(file_path): with open(file_path, 'r') as file: return file.read() # Define the folder containing the saved index INDEX_OUTPUT_PATH = "./output_index" # Ensure the output directory exists if not os.path.exists(INDEX_OUTPUT_PATH): raise ValueError(f"Index directory {INDEX_OUTPUT_PATH} does not exist") # Setup LLM and embedding model llm = Ollama(model="llama3", request_timeout=120.0) embed_model = HuggingFaceEmbedding(model_name="BAAI/bge-large-en-v1.5", trust_remote_code=True) # To load the index later, set up the storage context storage_context = StorageContext.from_defaults(persist_dir=INDEX_OUTPUT_PATH) loaded_index = load_index_from_storage(embed_model=embed_model, storage_context=storage_context) # Define a query engine (assuming it needs the LLM and embedding model) query_engine = loaded_index.as_query_engine(llm=llm, embed_model=embed_model) # Customise prompt template # Read the prompt template from a file qa_prompt_tmpl_str = read_description_from_file("tab2_pe.txt") qa_prompt_tmpl = PromptTemplate(qa_prompt_tmpl_str) query_engine.update_prompts( {"response_synthesizer:text_qa_template": qa_prompt_tmpl} ) # Save the question and answer to the SQLite3 database def save_to_db(question, answer, version): c.execute('INSERT INTO qa (question, answer, version) VALUES (?, ?, ?)', (question, answer, version)) conn.commit() # Fetch all data from the SQLite3 database def fetch_from_db(): c.execute('SELECT * FROM qa') return c.fetchall() def main(): st.title("How Much AI Can Assist Our Email Replying System Of Our Council?") tab1, tab2, tab3 = st.tabs(["LLM Model Description", "Ask a Question", "View Q&A History"]) with tab1: st.subheader("LLM Model Description") description = read_description_from_file("tab1_intro.txt") st.write(description) with tab2: st.subheader("Ask a Question (Please try to focus on council tax)") question = st.text_input("Enter your question:") if st.button("Get Answer"): if question: try: response = query_engine.query(question) # Try to extract the generated text try: # Extract the text from the response object (assuming it has a `text` attribute or method) if hasattr(response, 'text'): answer = response.text else: answer = str(response) except AttributeError as e: st.error(f"Error extracting text from response: {e}") answer = "Sorry, could not generate an answer." st.write(f"**Answer:** {answer}") # Save question and answer to database save_to_db(question, answer, version) except Exception as e: st.error(f"An error occurred: {e}") else: st.warning("Please enter a question") with tab3: st.subheader("View Q&A History") qa_data = fetch_from_db() if qa_data: df = pd.DataFrame(qa_data, columns=["Question", "Answer", "Version"]) st.dataframe(df) else: st.write("No data available") if __name__ == "__main__": main()