Eric2983 commited on
Commit
1aabf09
1 Parent(s): af8d2aa

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +23 -1
app.py CHANGED
@@ -1,5 +1,9 @@
1
  import tensorflow as tf
2
  import matplotlib.pyplot as plt
 
 
 
 
3
 
4
  #Preprocesamiento de imagenes del conjunto de entrenamiento
5
  training_set = tf.keras.utils.image_dataset_from_directory(
@@ -68,4 +72,22 @@ model.add(tf.keras.layers.Dropout(0.5)) #To avoid overfitting
68
 
69
 
70
  #Output Layer
71
- model.add(tf.keras.layers.Dense(units=36,activation='softmax'))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  import tensorflow as tf
2
  import matplotlib.pyplot as plt
3
+ from tensorflow.keras.callbacks import ModelCheckpoint
4
+ import tensorflow as tf
5
+ import datetime
6
+
7
 
8
  #Preprocesamiento de imagenes del conjunto de entrenamiento
9
  training_set = tf.keras.utils.image_dataset_from_directory(
 
72
 
73
 
74
  #Output Layer
75
+ model.add(tf.keras.layers.Dense(units=36,activation='softmax'))
76
+
77
+ model.compile(optimizer='adam',loss='categorical_crossentropy',metrics=['accuracy',"mean_absolute_error","Precision","Recall",tf.keras.metrics.AUC()])
78
+
79
+ %load_ext tensorboard
80
+ #!rm -rf ./logs/
81
+ log_dir = "logs/fit/" + datetime.datetime.now().strftime("%Y%m%d-%H%M%S")
82
+ tensorboard_callback = tf.keras.callbacks.TensorBoard(log_dir=log_dir, histogram_freq=1)
83
+
84
+ #Entrenar el modelo desde la ultima epoca almacenada usando el parametro initial_epoch
85
+ history = model.fit(x=training_set,validation_data=validation_set, epochs=epochs, initial_epoch=max_num, callbacks=[tensorboard_callback, checkpoint_callback])
86
+
87
+ #Precisión del conjunto de entrenamiento
88
+ train_loss, train_acc = model.evaluate(training_set)
89
+ print('Training accuracy:', train_acc)
90
+
91
+ #Precisión del conjunto de validación
92
+ val_loss, val_acc = model.evaluate(validation_set)
93
+ print('Validation accuracy:', val_acc)