EricLam commited on
Commit
5e3266f
1 Parent(s): eabe7e4

Update requirements.txt.file

Browse files
Files changed (1) hide show
  1. requirements.txt.file +198 -0
requirements.txt.file CHANGED
@@ -0,0 +1,198 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2020, Microsoft and the HuggingFace Inc. team.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """ DeBERTa model configuration"""
16
+ from collections import OrderedDict
17
+ from typing import TYPE_CHECKING, Any, Mapping, Optional, Union
18
+
19
+ from ...configuration_utils import PretrainedConfig
20
+ from ...onnx import OnnxConfig
21
+ from ...utils import logging
22
+
23
+
24
+ if TYPE_CHECKING:
25
+ from ... import FeatureExtractionMixin, PreTrainedTokenizerBase, TensorType
26
+
27
+
28
+ logger = logging.get_logger(__name__)
29
+
30
+ DEBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP = {
31
+ "microsoft/deberta-base": "https://huggingface.co/microsoft/deberta-base/resolve/main/config.json",
32
+ "microsoft/deberta-large": "https://huggingface.co/microsoft/deberta-large/resolve/main/config.json",
33
+ "microsoft/deberta-xlarge": "https://huggingface.co/microsoft/deberta-xlarge/resolve/main/config.json",
34
+ "microsoft/deberta-base-mnli": "https://huggingface.co/microsoft/deberta-base-mnli/resolve/main/config.json",
35
+ "microsoft/deberta-large-mnli": "https://huggingface.co/microsoft/deberta-large-mnli/resolve/main/config.json",
36
+ "microsoft/deberta-xlarge-mnli": "https://huggingface.co/microsoft/deberta-xlarge-mnli/resolve/main/config.json",
37
+ }
38
+
39
+
40
+ class DebertaConfig(PretrainedConfig):
41
+ r"""
42
+ This is the configuration class to store the configuration of a [`DebertaModel`] or a [`TFDebertaModel`]. It is
43
+ used to instantiate a DeBERTa model according to the specified arguments, defining the model architecture.
44
+ Instantiating a configuration with the defaults will yield a similar configuration to that of the DeBERTa
45
+ [microsoft/deberta-base](https://huggingface.co/microsoft/deberta-base) architecture.
46
+
47
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
48
+ documentation from [`PretrainedConfig`] for more information.
49
+
50
+ Arguments:
51
+ vocab_size (`int`, *optional*, defaults to 30522):
52
+ Vocabulary size of the DeBERTa model. Defines the number of different tokens that can be represented by the
53
+ `inputs_ids` passed when calling [`DebertaModel`] or [`TFDebertaModel`].
54
+ hidden_size (`int`, *optional*, defaults to 768):
55
+ Dimensionality of the encoder layers and the pooler layer.
56
+ num_hidden_layers (`int`, *optional*, defaults to 12):
57
+ Number of hidden layers in the Transformer encoder.
58
+ num_attention_heads (`int`, *optional*, defaults to 12):
59
+ Number of attention heads for each attention layer in the Transformer encoder.
60
+ intermediate_size (`int`, *optional*, defaults to 3072):
61
+ Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder.
62
+ hidden_act (`str` or `Callable`, *optional*, defaults to `"gelu"`):
63
+ The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
64
+ `"relu"`, `"silu"`, `"gelu"`, `"tanh"`, `"gelu_fast"`, `"mish"`, `"linear"`, `"sigmoid"` and `"gelu_new"`
65
+ are supported.
66
+ hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
67
+ The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
68
+ attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1):
69
+ The dropout ratio for the attention probabilities.
70
+ max_position_embeddings (`int`, *optional*, defaults to 512):
71
+ The maximum sequence length that this model might ever be used with. Typically set this to something large
72
+ just in case (e.g., 512 or 1024 or 2048).
73
+ type_vocab_size (`int`, *optional*, defaults to 2):
74
+ The vocabulary size of the `token_type_ids` passed when calling [`DebertaModel`] or [`TFDebertaModel`].
75
+ initializer_range (`float`, *optional*, defaults to 0.02):
76
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
77
+ layer_norm_eps (`float`, *optional*, defaults to 1e-12):
78
+ The epsilon used by the layer normalization layers.
79
+ relative_attention (`bool`, *optional*, defaults to `False`):
80
+ Whether use relative position encoding.
81
+ max_relative_positions (`int`, *optional*, defaults to 1):
82
+ The range of relative positions `[-max_position_embeddings, max_position_embeddings]`. Use the same value
83
+ as `max_position_embeddings`.
84
+ pad_token_id (`int`, *optional*, defaults to 0):
85
+ The value used to pad input_ids.
86
+ position_biased_input (`bool`, *optional*, defaults to `True`):
87
+ Whether add absolute position embedding to content embedding.
88
+ pos_att_type (`List[str]`, *optional*):
89
+ The type of relative position attention, it can be a combination of `["p2c", "c2p"]`, e.g. `["p2c"]`,
90
+ `["p2c", "c2p"]`.
91
+ layer_norm_eps (`float`, optional, defaults to 1e-12):
92
+ The epsilon used by the layer normalization layers.
93
+
94
+ Example:
95
+
96
+ ```python
97
+ >>> from transformers import DebertaConfig, DebertaModel
98
+
99
+ >>> # Initializing a DeBERTa microsoft/deberta-base style configuration
100
+ >>> configuration = DebertaConfig()
101
+
102
+ >>> # Initializing a model (with random weights) from the microsoft/deberta-base style configuration
103
+ >>> model = DebertaModel(configuration)
104
+
105
+ >>> # Accessing the model configuration
106
+ >>> configuration = model.config
107
+ ```"""
108
+ model_type = "deberta"
109
+
110
+ def __init__(
111
+ self,
112
+ vocab_size=50265,
113
+ hidden_size=768,
114
+ num_hidden_layers=12,
115
+ num_attention_heads=12,
116
+ intermediate_size=3072,
117
+ hidden_act="gelu",
118
+ hidden_dropout_prob=0.1,
119
+ attention_probs_dropout_prob=0.1,
120
+ max_position_embeddings=512,
121
+ type_vocab_size=0,
122
+ initializer_range=0.02,
123
+ layer_norm_eps=1e-7,
124
+ relative_attention=False,
125
+ max_relative_positions=-1,
126
+ pad_token_id=0,
127
+ position_biased_input=True,
128
+ pos_att_type=None,
129
+ pooler_dropout=0,
130
+ pooler_hidden_act="gelu",
131
+ **kwargs
132
+ ):
133
+ super().__init__(**kwargs)
134
+
135
+ self.hidden_size = hidden_size
136
+ self.num_hidden_layers = num_hidden_layers
137
+ self.num_attention_heads = num_attention_heads
138
+ self.intermediate_size = intermediate_size
139
+ self.hidden_act = hidden_act
140
+ self.hidden_dropout_prob = hidden_dropout_prob
141
+ self.attention_probs_dropout_prob = attention_probs_dropout_prob
142
+ self.max_position_embeddings = max_position_embeddings
143
+ self.type_vocab_size = type_vocab_size
144
+ self.initializer_range = initializer_range
145
+ self.relative_attention = relative_attention
146
+ self.max_relative_positions = max_relative_positions
147
+ self.pad_token_id = pad_token_id
148
+ self.position_biased_input = position_biased_input
149
+
150
+ # Backwards compatibility
151
+ if type(pos_att_type) == str:
152
+ pos_att_type = [x.strip() for x in pos_att_type.lower().split("|")]
153
+
154
+ self.pos_att_type = pos_att_type
155
+ self.vocab_size = vocab_size
156
+ self.layer_norm_eps = layer_norm_eps
157
+
158
+ self.pooler_hidden_size = kwargs.get("pooler_hidden_size", hidden_size)
159
+ self.pooler_dropout = pooler_dropout
160
+ self.pooler_hidden_act = pooler_hidden_act
161
+
162
+
163
+ # Copied from transformers.models.deberta_v2.configuration_deberta_v2.DebertaV2OnnxConfig
164
+ class DebertaOnnxConfig(OnnxConfig):
165
+ @property
166
+ def inputs(self) -> Mapping[str, Mapping[int, str]]:
167
+ if self.task == "multiple-choice":
168
+ dynamic_axis = {0: "batch", 1: "choice", 2: "sequence"}
169
+ else:
170
+ dynamic_axis = {0: "batch", 1: "sequence"}
171
+ if self._config.type_vocab_size > 0:
172
+ return OrderedDict(
173
+ [("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ("token_type_ids", dynamic_axis)]
174
+ )
175
+ else:
176
+ return OrderedDict([("input_ids", dynamic_axis), ("attention_mask", dynamic_axis)])
177
+
178
+ @property
179
+ def default_onnx_opset(self) -> int:
180
+ return 12
181
+
182
+ def generate_dummy_inputs(
183
+ self,
184
+ preprocessor: Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"],
185
+ batch_size: int = -1,
186
+ seq_length: int = -1,
187
+ num_choices: int = -1,
188
+ is_pair: bool = False,
189
+ framework: Optional["TensorType"] = None,
190
+ num_channels: int = 3,
191
+ image_width: int = 40,
192
+ image_height: int = 40,
193
+ tokenizer: "PreTrainedTokenizerBase" = None,
194
+ ) -> Mapping[str, Any]:
195
+ dummy_inputs = super().generate_dummy_inputs(preprocessor=preprocessor, framework=framework)
196
+ if self._config.type_vocab_size == 0 and "token_type_ids" in dummy_inputs:
197
+ del dummy_inputs["token_type_ids"]
198
+ return dummy_inputs