import gradio as gr import tensorflow as tf import numpy as np import requests labels = ["missing"] * 36 with open('labels.txt','r') as f: labels = f.read().splitlines() def classify_image(inp): model = tf.keras.models.load_model('saved_model') inp = inp.resize((480,480)) inp = np.array(inp) inp = np.reshape(inp,(-1, 480, 480, 3)).astype(np.float32) inp = np.divide(inp,255.0) prediction = model.predict(inp).flatten() return {labels[i]: float(prediction[i]) for i in range(36)} image = gr.inputs.Image(type='pil') label = gr.outputs.Label(num_top_classes=3) gr.Interface(fn=classify_image, inputs=image, outputs=label, capture_session=True, theme = "grass", examples = [["test.jpg"]]).launch()