Spaces:
Runtime error
Runtime error
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, DataCollatorForSeq2Seq | |
from datasets import load_dataset, load_from_disk | |
from evaluate import load | |
import torch | |
import os | |
# Use a pipeline as a high-level helper | |
from transformers import pipeline | |
pipe = pipeline("text-generation", model="openaccess-ai-collective/minotaur-15b") | |
# Load model directly | |
from transformers import AutoTokenizer, AutoModelForCausalLM | |
tokenizer = AutoTokenizer.from_pretrained("openaccess-ai-collective/minotaur-15b") | |
model = AutoModelForCausalLM.from_pretrained("openaccess-ai-collective/minotaur-15b") | |
model_id = "your_model_id" # Replace with your model ID | |
tokenizer = AutoTokenizer.from_pretrained(model_id) | |
model = AutoModelForSeq2SeqLM.from_pretrained(model_id) | |
data_collator = DataCollatorForSeq2Seq(tokenizer, model=model) | |
def generate_answer(question, file_path): | |
if os.path.exists(file_path): | |
# Load data from file | |
if file_path.endswith(".csv"): | |
data = pd.read_csv(file_path) | |
elif file_path.endswith(".json"): | |
data = json.load(open(file_path)) | |
else: | |
data = open(file_path, "r").read() | |
else: | |
data = "" | |
prompt = f""" | |
Answer the question based on the provided context: | |
Question: {question} | |
Context: {data} | |
Answer: | |
""" | |
inputs = tokenizer(prompt, return_tensors="pt") | |
input_ids = inputs.input_ids.to(torch.device("cuda" if torch.cuda.is_available() else "cpu")) | |
attention_mask = inputs.attention_mask.to(torch.device("cuda" if torch.cuda.is_available() else "cpu")) | |
output = model.generate(input_ids=input_ids, attention_mask=attention_mask) | |
answer = tokenizer.decode(output[0], skip_special_tokens=True) | |
return answer | |
def main(): | |
question = input("Enter your question: ") | |
file_path = input("Enter the file path (optional): ") | |
answer = generate_answer(question, file_path) | |
print(f"Answer: {answer}") | |
if __name__ == "__main__": | |
main() |