File size: 8,141 Bytes
64e1ee8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
import torch
from torch import nn
from torch.nn import functional as F
from nanograd.models.stable_diffusion.attention import SelfAttention, CrossAttention

class TimeEmbedding(nn.Module):
    def __init__(self, n_embd):
        super().__init__()
        self.linear_1 = nn.Linear(n_embd, 4 * n_embd)
        self.linear_2 = nn.Linear(4 * n_embd, 4 * n_embd)

    def forward(self, x):
        x = self.linear_1(x)
        x = F.silu(x) 
        x = self.linear_2(x)

        return x

class UNET_ResidualBlock(nn.Module):
    def __init__(self, in_channels, out_channels, n_time=1280):
        super().__init__()
        self.groupnorm_feature = nn.GroupNorm(32, in_channels)
        self.conv_feature = nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1)
        self.linear_time = nn.Linear(n_time, out_channels)

        self.groupnorm_merged = nn.GroupNorm(32, out_channels)
        self.conv_merged = nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1)

        if in_channels == out_channels:
            self.residual_layer = nn.Identity()
        else:
            self.residual_layer = nn.Conv2d(in_channels, out_channels, kernel_size=1, padding=0)
    
    def forward(self, feature, time):
        residue = feature
        
        feature = self.groupnorm_feature(feature)
        feature = F.silu(feature)
        feature = self.conv_feature(feature)
        
        time = F.silu(time)

        time = self.linear_time(time)
        merged = feature + time.unsqueeze(-1).unsqueeze(-1)
        merged = self.groupnorm_merged(merged)
        merged = F.silu(merged)
        merged = self.conv_merged(merged)

        return merged + self.residual_layer(residue)

class UNET_AttentionBlock(nn.Module):
    def __init__(self, n_head: int, n_embd: int, d_context=768):
        super().__init__()
        channels = n_head * n_embd
        
        self.groupnorm = nn.GroupNorm(32, channels, eps=1e-6)
        self.conv_input = nn.Conv2d(channels, channels, kernel_size=1, padding=0)

        self.layernorm_1 = nn.LayerNorm(channels)
        self.attention_1 = SelfAttention(n_head, channels, in_proj_bias=False)
        self.layernorm_2 = nn.LayerNorm(channels)
        self.attention_2 = CrossAttention(n_head, channels, d_context, in_proj_bias=False)
        self.layernorm_3 = nn.LayerNorm(channels)
        self.linear_geglu_1  = nn.Linear(channels, 4 * channels * 2)
        self.linear_geglu_2 = nn.Linear(4 * channels, channels)

        self.conv_output = nn.Conv2d(channels, channels, kernel_size=1, padding=0)
    
    def forward(self, x, context):
        residue_long = x

        x = self.groupnorm(x)
        x = self.conv_input(x)
        
        n, c, h, w = x.shape
        x = x.view((n, c, h * w))
        
        x = x.transpose(-1, -2)
        
        residue_short = x
        
        x = self.layernorm_1(x)
        x = self.attention_1(x)
        x += residue_short
        
        residue_short = x

        x = self.layernorm_2(x)
        x = self.attention_2(x, context)
        
        x += residue_short
        
        residue_short = x

        x = self.layernorm_3(x)
        
        # GeGLU as implemented in the original code: https://github.com/CompVis/stable-diffusion/blob/21f890f9da3cfbeaba8e2ac3c425ee9e998d5229/ldm/modules/attention.py#L37C10-L37C10
        x, gate = self.linear_geglu_1(x).chunk(2, dim=-1) 
        x = x * F.gelu(gate)
        x = self.linear_geglu_2(x)
        x += residue_short
        x = x.transpose(-1, -2)
        
        x = x.view((n, c, h, w))

        return self.conv_output(x) + residue_long

class Upsample(nn.Module):
    def __init__(self, channels):
        super().__init__()
        self.conv = nn.Conv2d(channels, channels, kernel_size=3, padding=1)
    
    def forward(self, x):
        x = F.interpolate(x, scale_factor=2, mode='nearest') 
        return self.conv(x)

class SwitchSequential(nn.Sequential):
    def forward(self, x, context, time):
        for layer in self:
            if isinstance(layer, UNET_AttentionBlock):
                x = layer(x, context)
            elif isinstance(layer, UNET_ResidualBlock):
                x = layer(x, time)
            else:
                x = layer(x)
        return x

class UNET(nn.Module):
    def __init__(self):
        super().__init__()
        self.encoders = nn.ModuleList([
            SwitchSequential(nn.Conv2d(4, 320, kernel_size=3, padding=1)),
            SwitchSequential(UNET_ResidualBlock(320, 320), UNET_AttentionBlock(8, 40)),
            SwitchSequential(UNET_ResidualBlock(320, 320), UNET_AttentionBlock(8, 40)),
            SwitchSequential(nn.Conv2d(320, 320, kernel_size=3, stride=2, padding=1)),
            SwitchSequential(UNET_ResidualBlock(320, 640), UNET_AttentionBlock(8, 80)),
            SwitchSequential(UNET_ResidualBlock(640, 640), UNET_AttentionBlock(8, 80)),
            SwitchSequential(nn.Conv2d(640, 640, kernel_size=3, stride=2, padding=1)),
            SwitchSequential(UNET_ResidualBlock(640, 1280), UNET_AttentionBlock(8, 160)),
            SwitchSequential(UNET_ResidualBlock(1280, 1280), UNET_AttentionBlock(8, 160)),
            SwitchSequential(nn.Conv2d(1280, 1280, kernel_size=3, stride=2, padding=1)),
            SwitchSequential(UNET_ResidualBlock(1280, 1280)),
            SwitchSequential(UNET_ResidualBlock(1280, 1280)),
        ])

        self.bottleneck = SwitchSequential(
            UNET_ResidualBlock(1280, 1280), 
            UNET_AttentionBlock(8, 160), 
            UNET_ResidualBlock(1280, 1280), 
        )
        
        self.decoders = nn.ModuleList([
            SwitchSequential(UNET_ResidualBlock(2560, 1280)),
            SwitchSequential(UNET_ResidualBlock(2560, 1280)),
            SwitchSequential(UNET_ResidualBlock(2560, 1280), Upsample(1280)),
            SwitchSequential(UNET_ResidualBlock(2560, 1280), UNET_AttentionBlock(8, 160)),
            
            SwitchSequential(UNET_ResidualBlock(2560, 1280), UNET_AttentionBlock(8, 160)),
            SwitchSequential(UNET_ResidualBlock(1920, 1280), UNET_AttentionBlock(8, 160), Upsample(1280)),
            
            SwitchSequential(UNET_ResidualBlock(1920, 640), UNET_AttentionBlock(8, 80)),
            SwitchSequential(UNET_ResidualBlock(1280, 640), UNET_AttentionBlock(8, 80)),
            
            SwitchSequential(UNET_ResidualBlock(960, 640), UNET_AttentionBlock(8, 80), Upsample(640)),
            SwitchSequential(UNET_ResidualBlock(960, 320), UNET_AttentionBlock(8, 40)),
            SwitchSequential(UNET_ResidualBlock(640, 320), UNET_AttentionBlock(8, 40)),
            
            SwitchSequential(UNET_ResidualBlock(640, 320), UNET_AttentionBlock(8, 40)),
        ])

    def forward(self, x, context, time):
        skip_connections = []
        for layers in self.encoders:
            x = layers(x, context, time)
            skip_connections.append(x)

        x = self.bottleneck(x, context, time)

        for layers in self.decoders:
            x = torch.cat((x, skip_connections.pop()), dim=1) 
            x = layers(x, context, time)
        
        return x


class UNET_OutputLayer(nn.Module):
    def __init__(self, in_channels, out_channels):
        super().__init__()
        self.groupnorm = nn.GroupNorm(32, in_channels)
        self.conv = nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1)
    
    def forward(self, x):
        x = self.groupnorm(x)
        x = F.silu(x)
        x = self.conv(x)
        
        return x

class Diffusion(nn.Module):
    def __init__(self):
        super().__init__()
        self.time_embedding = TimeEmbedding(320)
        self.unet = UNET()
        self.final = UNET_OutputLayer(320, 4)
    
    def forward(self, latent, context, time):
        time = self.time_embedding(time)
        
        output = self.unet(latent, context, time)
        
        output = self.final(output)
        
        return output