Spaces:
Runtime error
Runtime error
from nanograd.models.stable_diffusion import model_loader | |
from nanograd.models.stable_diffusion import pipeline | |
from PIL import Image | |
from pathlib import Path | |
from transformers import CLIPTokenizer | |
import torch | |
DEVICE = "cpu" | |
ALLOW_CUDA = False | |
ALLOW_MPS = False | |
if torch.cuda.is_available() and ALLOW_CUDA: | |
DEVICE = "cuda" | |
elif (torch.has_mps or torch.backends.mps.is_available()) and ALLOW_MPS: | |
DEVICE = "mps" | |
print(f"Using device: {DEVICE}") | |
tokenizer = CLIPTokenizer("nanograd\models\stable_diffusion\sd_data\\tokenizer_vocab.json", merges_file="nanograd\models\stable_diffusion\sd_data\\tokenizer_merges.txt") | |
model_file = "nanograd\models\stable_diffusion\sd_data\\v1-5-pruned-emaonly.ckpt" | |
models = model_loader.preload_models_from_standard_weights(model_file, DEVICE) | |
## TEXT TO IMAGE | |
prompt = input("Enter your prompt: ") | |
# prompt = "A cat stretching on the floor, highly detailed, ultra sharp, cinematic, 100mm lens, 8k resolution." | |
uncond_prompt = "" | |
do_cfg = True | |
cfg_scale = 8 # min: 1, max: 14 | |
## IMAGE TO IMAGE | |
input_image = None | |
# Comment to disable image to image | |
# image_path = "../images/dog.jpg" | |
# input_image = Image.open(image_path) | |
# Higher values means more noise will be added to the input image, so the result will further from the input image. | |
strength = 0.9 | |
## SAMPLER | |
sampler = "ddpm" | |
num_inference_steps = 50 | |
seed = 42 | |
def run(): | |
output_image = pipeline.generate( | |
prompt=prompt, | |
uncond_prompt=uncond_prompt, | |
input_image=input_image, | |
strength=strength, | |
do_cfg=do_cfg, | |
cfg_scale=cfg_scale, | |
sampler_name=sampler, | |
n_inference_steps=num_inference_steps, | |
seed=seed, | |
models=models, | |
device=DEVICE, | |
idle_device="cpu", | |
tokenizer=tokenizer, | |
) | |
output_image = Image.fromarray(output_image) | |
output_path = "nanograd\models\stable_diffusion\output\\c.png" | |
output_image.save(output_path) | |
print(f"Image saved as {output_path}") | |
if __name__ == "__main__": | |
run() | |