import torch from torch import nn from torch.nn import functional as F from nanograd.models.stable_diffusion.attention import SelfAttention class VAE_AttentionBlock(nn.Module): def __init__(self, channels): super().__init__() self.groupnorm = nn.GroupNorm(32, channels) self.attention = SelfAttention(1, channels) def forward(self, x): residue = x x = self.groupnorm(x) n, c, h, w = x.shape x = x.view((n, c, h * w)) x = x.transpose(-1, -2) x = self.attention(x) x = x.transpose(-1, -2) x = x.view((n, c, h, w)) x += residue return x class VAE_ResidualBlock(nn.Module): def __init__(self, in_channels, out_channels): super().__init__() self.groupnorm_1 = nn.GroupNorm(32, in_channels) self.conv_1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1) self.groupnorm_2 = nn.GroupNorm(32, out_channels) self.conv_2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1) if in_channels == out_channels: self.residual_layer = nn.Identity() else: self.residual_layer = nn.Conv2d(in_channels, out_channels, kernel_size=1, padding=0) def forward(self, x): residue = x x = self.groupnorm_1(x) x = F.silu(x) x = self.conv_1(x) x = self.groupnorm_2(x) x = F.silu(x) x = self.conv_2(x) return x + self.residual_layer(residue) class VAE_Decoder(nn.Sequential): def __init__(self): super().__init__( nn.Conv2d(4, 4, kernel_size=1, padding=0), nn.Conv2d(4, 512, kernel_size=3, padding=1), VAE_ResidualBlock(512, 512), VAE_AttentionBlock(512), VAE_ResidualBlock(512, 512), VAE_ResidualBlock(512, 512), VAE_ResidualBlock(512, 512), VAE_ResidualBlock(512, 512), # (Batch_Size, 512, Height / 8, Width / 8) -> (Batch_Size, 512, Height / 4, Width / 4) nn.Upsample(scale_factor=2), nn.Conv2d(512, 512, kernel_size=3, padding=1), VAE_ResidualBlock(512, 512), VAE_ResidualBlock(512, 512), VAE_ResidualBlock(512, 512), # (Batch_Size, 512, Height / 4, Width / 4) -> (Batch_Size, 512, Height / 2, Width / 2) nn.Upsample(scale_factor=2), nn.Conv2d(512, 512, kernel_size=3, padding=1), VAE_ResidualBlock(512, 256), VAE_ResidualBlock(256, 256), VAE_ResidualBlock(256, 256), nn.Upsample(scale_factor=2), nn.Conv2d(256, 256, kernel_size=3, padding=1), VAE_ResidualBlock(256, 128), VAE_ResidualBlock(128, 128), VAE_ResidualBlock(128, 128), nn.GroupNorm(32, 128), nn.SiLU(), nn.Conv2d(128, 3, kernel_size=3, padding=1), ) def forward(self, x): x /= 0.18215 for module in self: x = module(x) return x