|
from generators.model import ModelBase, Message |
|
import random |
|
import streamlit as st |
|
|
|
from typing import Union, List, Optional, Callable |
|
|
|
|
|
def generic_generate_func_impl( |
|
func_sig: str, |
|
model: ModelBase, |
|
strategy: str, |
|
prev_func_impl, |
|
feedback, |
|
self_reflection, |
|
num_comps, |
|
temperature, |
|
reflexion_chat_instruction: str, |
|
reflexion_few_shot: str, |
|
simple_chat_instruction: str, |
|
reflexion_completion_instruction: str, |
|
simple_completion_instruction: str, |
|
code_block_instruction: str, |
|
parse_code_block: Callable[[str], str], |
|
add_code_block: Callable[[str], str] |
|
) -> Union[str, List[str]]: |
|
if strategy != "reflexion" and strategy != "simple": |
|
raise ValueError( |
|
f"Invalid strategy: given `{strategy}` but expected one of `reflexion` or `simple`") |
|
if strategy == "reflexion" and (prev_func_impl is None or feedback is None or self_reflection is None): |
|
raise ValueError( |
|
f"Invalid arguments: given `strategy=reflexion` but `prev_func_impl`, `feedback`, or `self_reflection` is None") |
|
|
|
if model.is_chat: |
|
if strategy == "reflexion": |
|
message = f"{reflexion_few_shot}\n[previous impl]:\n{add_code_block(prev_func_impl)}\n\n[unit test results from previous impl]:\n{feedback}\n\n[reflection on previous impl]:\n{self_reflection}\n\n[improved impl]:\n{func_sig}" |
|
prompt = f"{reflexion_chat_instruction}\n{code_block_instruction}" |
|
|
|
print_messages(prompt, message) |
|
messages = [ |
|
Message( |
|
role="system", |
|
content=prompt, |
|
), |
|
Message( |
|
role="user", |
|
content=reflexion_few_shot, |
|
), |
|
Message( |
|
role="assistant", |
|
content=add_code_block(prev_func_impl), |
|
), |
|
Message( |
|
role="user", |
|
content=f"[unit test results from previous impl]:\n{feedback}\n\n[reflection on previous impl]:", |
|
), |
|
Message( |
|
role="assistant", |
|
content=self_reflection, |
|
), |
|
Message( |
|
role="user", |
|
content=f"[improved impl]:\n{func_sig}", |
|
), |
|
] |
|
func_bodies = model.generate_chat(messages=messages, num_comps=num_comps, temperature=temperature) |
|
else: |
|
system_prompt = f"{simple_chat_instruction}\n{code_block_instruction}" |
|
print_messages(system_prompt, func_sig) |
|
messages = [ |
|
Message( |
|
role="system", |
|
content=f"{simple_chat_instruction}\n{code_block_instruction}", |
|
), |
|
Message( |
|
role="user", |
|
content=func_sig, |
|
), |
|
] |
|
func_bodies = model.generate_chat(messages=messages, num_comps=num_comps, temperature=temperature) |
|
else: |
|
if strategy == "reflexion": |
|
prompt = f"{reflexion_completion_instruction}\n{add_code_block(prev_func_impl)}\n\nunit tests:\n{feedback}\n\nhint:\n{self_reflection}\n\n# improved implementation\n{func_sig}\n{code_block_instruction}" |
|
func_bodies = model.generate( |
|
prompt, num_comps=num_comps, temperature=temperature) |
|
else: |
|
prompt = f"{simple_completion_instruction}\n{func_sig}\n{code_block_instruction}" |
|
func_bodies = model.generate( |
|
prompt, num_comps=num_comps, temperature=temperature) |
|
|
|
if num_comps == 1: |
|
assert isinstance(func_bodies, str) |
|
func_body_str = parse_code_block(func_bodies) |
|
print_generated_func_body(func_body_str) |
|
return func_body_str |
|
|
|
else: |
|
func_bodies = [parse_code_block(func_body) for func_body in func_bodies] |
|
print_generated_func_body("\n\n".join(func_bodies)) |
|
return func_bodies |
|
|
|
|
|
def generate_with_accumulated_context( |
|
func_sig: str, |
|
model: ModelBase, |
|
strategy: str, |
|
prev_func_impl, |
|
accumulated_feedback, |
|
accumulated_reflection, |
|
num_comps, |
|
temperature, |
|
reflexion_chat_instruction: str, |
|
reflexion_few_shot: str, |
|
simple_chat_instruction: str, |
|
reflexion_completion_instruction: str, |
|
simple_completion_instruction: str, |
|
code_block_instruction: str, |
|
parse_code_block: Callable[[str], str], |
|
add_code_block: Callable[[str], str] |
|
) -> Union[str, List[str]]: |
|
|
|
if strategy != "reflexion" and strategy != "simple": |
|
raise ValueError( |
|
f"Invalid strategy: given `{strategy}` but expected one of `reflexion` or `simple`") |
|
if strategy == "reflexion" and (prev_func_impl is None or accumulated_feedback is None or accumulated_reflection is None): |
|
raise ValueError( |
|
f"Invalid arguments: given `strategy=reflexion` but `prev_func_impl`, `feedback`, or `self_reflection` is None") |
|
|
|
|
|
accumulated_context = "\n\n".join( |
|
[f"[previous impl {i+1}]:\n{add_code_block(impl)}\n[unit test results from previous impl {i+1}]:\n{feedback}\n[reflection on previous impl {i+1}]:\n{reflection}" |
|
for i, (impl, feedback, reflection) in enumerate(zip(prev_func_impl, accumulated_feedback, accumulated_reflection))] |
|
) |
|
|
|
if model.is_chat: |
|
if strategy == "reflexion": |
|
|
|
messages = [ |
|
Message(role="system", content=f"{reflexion_chat_instruction}\n{code_block_instruction}"), |
|
Message(role="user", content=reflexion_few_shot) |
|
] |
|
|
|
for impl, feedback, reflection in zip(prev_func_impl, accumulated_feedback, accumulated_reflection): |
|
messages.append(Message(role="assistant", content=add_code_block(impl))) |
|
messages.append(Message(role="user", content=f"[unit test results from previous impl]:\n{feedback}\n\n[reflection on previous impl]:\n{reflection}")) |
|
|
|
messages.append(Message(role="user", content=f"[improved impl]:\n{func_sig}")) |
|
prompt = "\n".join([message.content for message in messages]) |
|
message = (f"{reflexion_few_shot}\n{accumulated_context}\n\n[improved impl]:\n{func_sig}") |
|
print_messages(prompt, message) |
|
|
|
func_bodies = model.generate_chat(messages=messages, num_comps=num_comps, temperature=temperature) |
|
else: |
|
system_prompt = f"{simple_chat_instruction}\n{code_block_instruction}" |
|
print_messages(system_prompt, func_sig) |
|
messages = [ |
|
Message(role="system", content=f"{simple_chat_instruction}\n{code_block_instruction}"), |
|
Message(role="user", content=func_sig) |
|
] |
|
func_bodies = model.generate_chat(messages=messages, num_comps=num_comps, temperature=temperature) |
|
else: |
|
if strategy == "reflexion": |
|
prompt = f"{reflexion_completion_instruction}\n{accumulated_context}\n\n# improved implementation\n{func_sig}\n{code_block_instruction}" |
|
func_bodies = model.generate(prompt, num_comps=num_comps, temperature=temperature) |
|
print_messages(prompt, "") |
|
else: |
|
prompt = f"{simple_completion_instruction}\n{func_sig}\n{code_block_instruction}" |
|
func_bodies = model.generate(prompt, num_comps=num_comps, temperature=temperature) |
|
print_messages(prompt, "") |
|
|
|
if num_comps == 1: |
|
assert isinstance(func_bodies, str) |
|
func_body_str = parse_code_block(func_bodies) |
|
print_generated_func_body(func_body_str) |
|
return func_body_str |
|
|
|
else: |
|
func_bodies = [parse_code_block(func_body) for func_body in func_bodies] |
|
print_generated_func_body("\n\n".join(func_bodies)) |
|
return func_bodies |
|
|
|
|
|
def generic_generate_internal_tests( |
|
func_sig: str, |
|
model: ModelBase, |
|
max_num_tests: int, |
|
test_generation_few_shot: str, |
|
test_generation_chat_instruction: str, |
|
test_generation_completion_instruction: str, |
|
parse_tests: Callable[[str], List[str]], |
|
is_syntax_valid: Callable[[str], bool], |
|
is_react: bool = False |
|
) -> List[str]: |
|
"""Generates tests for a function.""" |
|
if model.is_chat: |
|
if is_react: |
|
messages = [ |
|
Message( |
|
role="system", |
|
content=test_generation_chat_instruction, |
|
), |
|
Message( |
|
role="user", |
|
content=f"{test_generation_few_shot}\n\n[func signature]:\n{func_sig}\n\n[think]:" |
|
) |
|
] |
|
output = model.generate_chat(messages=messages, max_tokens=1024) |
|
print(f'React test generation output: {output}') |
|
else: |
|
messages = [ |
|
Message( |
|
role="system", |
|
content=test_generation_chat_instruction, |
|
), |
|
Message( |
|
role="user", |
|
content=f"{test_generation_few_shot}\n\n[func signature]:\n{func_sig}\n\n[unit tests]:", |
|
) |
|
] |
|
output = model.generate_chat(messages=messages, max_tokens=1024) |
|
else: |
|
prompt = f'{test_generation_completion_instruction}\n\nfunc signature:\n{func_sig}\nunit tests:' |
|
output = model.generate(prompt, max_tokens=1024) |
|
all_tests = parse_tests(output) |
|
valid_tests = [test for test in all_tests if is_syntax_valid(test)] |
|
|
|
|
|
|
|
return (valid_tests) |
|
|
|
|
|
def generic_generate_self_reflection( |
|
func: str, |
|
feedback: str, |
|
model: ModelBase, |
|
self_reflection_chat_instruction: str, |
|
self_reflection_completion_instruction: str, |
|
add_code_block: Callable[[str], str], |
|
self_reflection_few_shot: Optional[str] = None, |
|
) -> str: |
|
if model.is_chat: |
|
if self_reflection_few_shot is not None: |
|
messages = [ |
|
Message( |
|
role="system", |
|
content=self_reflection_chat_instruction, |
|
), |
|
Message( |
|
role="user", |
|
content=f'{self_reflection_few_shot}\n\n[function impl]:\n{add_code_block(func)}\n\n[unit test results]:\n{feedback}\n\n[self-reflection]:', |
|
) |
|
] |
|
reflection = model.generate_chat(messages=messages) |
|
print(f'|Self reflection output|: {reflection}') |
|
else: |
|
messages = [ |
|
Message( |
|
role="system", |
|
content=self_reflection_chat_instruction, |
|
), |
|
Message( |
|
role="user", |
|
content=f'[function impl]:\n{add_code_block(func)}\n\n[unit test results]:\n{feedback}\n\n[self-reflection]:', |
|
) |
|
] |
|
reflection = model.generate_chat(messages=messages) |
|
else: |
|
reflection = model.generate( |
|
f'{self_reflection_completion_instruction}\n{add_code_block(func)}\n\n{feedback}\n\nExplanation:') |
|
return reflection |
|
|
|
|
|
def sample_n_random(items: List[str], n: int) -> List[str]: |
|
"""Sample min(n, len(items)) random items from a list""" |
|
assert n >= 0 |
|
if n >= len(items): |
|
return items |
|
return random.sample(items, n) |
|
|
|
def print_messages(system_message_text: str, user_message_text: str) -> None: |
|
print(f"""{system_message_text}""") |
|
print(f"""{user_message_text} \n""") |
|
|
|
def print_generated_func_body(func_body_str: str) -> None: |
|
print(f"""|GENERATED FUNCTION BODY| \n |
|
```python\n{func_body_str} \n |
|
""") |
|
|