Etash Guha
commited on
Commit
•
15d89f9
1
Parent(s):
89a8b2b
added samba
Browse files- app.py +1 -1
- generators/factory.py +22 -1
- generators/model.py +240 -19
app.py
CHANGED
@@ -51,7 +51,7 @@ def make_args(instruction, tree_depth, tree_width, iterations):
|
|
51 |
|
52 |
parser.add_argument("--strategy", default="mcts", help="Strategy to use")
|
53 |
parser.add_argument("--language", default="py", help="Programming language")
|
54 |
-
parser.add_argument("--model", default="
|
55 |
parser.add_argument("--max_iters", default=iterations, help="Maximum iterations")
|
56 |
parser.add_argument("--instruction", default=instruction, help="Instruction text")
|
57 |
parser.add_argument("--verbose", action="store_true", help="Verbose output")
|
|
|
51 |
|
52 |
parser.add_argument("--strategy", default="mcts", help="Strategy to use")
|
53 |
parser.add_argument("--language", default="py", help="Programming language")
|
54 |
+
parser.add_argument("--model", default="samba", help="Model type")
|
55 |
parser.add_argument("--max_iters", default=iterations, help="Maximum iterations")
|
56 |
parser.add_argument("--instruction", default=instruction, help="Instruction text")
|
57 |
parser.add_argument("--verbose", action="store_true", help="Verbose output")
|
generators/factory.py
CHANGED
@@ -1,10 +1,17 @@
|
|
1 |
from .py_generate import PyGenerator
|
|
|
|
|
2 |
from .generator_types import Generator
|
3 |
-
from .model import ModelBase, GPT4, GPT35, GPTDavinci
|
|
|
4 |
|
5 |
def generator_factory(lang: str) -> Generator:
|
6 |
if lang == "py" or lang == "python":
|
7 |
return PyGenerator()
|
|
|
|
|
|
|
|
|
8 |
else:
|
9 |
raise ValueError(f"Invalid language for generator: {lang}")
|
10 |
|
@@ -12,8 +19,22 @@ def generator_factory(lang: str) -> Generator:
|
|
12 |
def model_factory(model_name: str) -> ModelBase:
|
13 |
if model_name == "gpt-4":
|
14 |
return GPT4()
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
elif model_name == "gpt-3.5-turbo-0613":
|
16 |
return GPT35()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
elif model_name.startswith("text-davinci"):
|
18 |
return GPTDavinci(model_name)
|
19 |
else:
|
|
|
1 |
from .py_generate import PyGenerator
|
2 |
+
from .rs_generate import RsGenerator
|
3 |
+
from .go_generate import GoGenerator
|
4 |
from .generator_types import Generator
|
5 |
+
from .model import CodeLlama, ModelBase, GPT4, GPT35, StarChat, GPTDavinci, Samba, GPT4o, GroqBase
|
6 |
+
|
7 |
|
8 |
def generator_factory(lang: str) -> Generator:
|
9 |
if lang == "py" or lang == "python":
|
10 |
return PyGenerator()
|
11 |
+
elif lang == "rs" or lang == "rust":
|
12 |
+
return RsGenerator()
|
13 |
+
elif lang == "go" or lang == "golang":
|
14 |
+
return GoGenerator()
|
15 |
else:
|
16 |
raise ValueError(f"Invalid language for generator: {lang}")
|
17 |
|
|
|
19 |
def model_factory(model_name: str) -> ModelBase:
|
20 |
if model_name == "gpt-4":
|
21 |
return GPT4()
|
22 |
+
elif model_name == "gpt-4o":
|
23 |
+
return GPT4o()
|
24 |
+
elif model_name == "samba":
|
25 |
+
return Samba()
|
26 |
+
elif model_name == "groq":
|
27 |
+
return GroqBase()
|
28 |
elif model_name == "gpt-3.5-turbo-0613":
|
29 |
return GPT35()
|
30 |
+
elif model_name == "starchat":
|
31 |
+
return StarChat()
|
32 |
+
elif model_name.startswith("codellama"):
|
33 |
+
# if it has `-` in the name, version was specified
|
34 |
+
kwargs = {}
|
35 |
+
if "-" in model_name:
|
36 |
+
kwargs["version"] = model_name.split("-")[1]
|
37 |
+
return CodeLlama(**kwargs)
|
38 |
elif model_name.startswith("text-davinci"):
|
39 |
return GPTDavinci(model_name)
|
40 |
else:
|
generators/model.py
CHANGED
@@ -7,6 +7,10 @@ from tenacity import (
|
|
7 |
wait_random_exponential, # type: ignore
|
8 |
)
|
9 |
import openai
|
|
|
|
|
|
|
|
|
10 |
|
11 |
MessageRole = Literal["system", "user", "assistant"]
|
12 |
|
@@ -54,29 +58,26 @@ def gpt_completion(
|
|
54 |
@retry(wait=wait_random_exponential(min=1, max=180), stop=stop_after_attempt(6))
|
55 |
def gpt_chat(
|
56 |
model: str,
|
57 |
-
messages: List,
|
58 |
max_tokens: int = 1024,
|
59 |
temperature: float = 0.0,
|
60 |
num_comps=1,
|
61 |
) -> Union[List[str], str]:
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
|
77 |
-
except Exception as e:
|
78 |
-
print(f"An error occurred while calling OpenAI: {e}")
|
79 |
-
raise
|
80 |
|
81 |
class ModelBase():
|
82 |
def __init__(self, name: str):
|
@@ -91,8 +92,78 @@ class ModelBase():
|
|
91 |
|
92 |
def generate(self, prompt: str, max_tokens: int = 1024, stop_strs: Optional[List[str]] = None, temperature: float = 0.0, num_comps=1) -> Union[List[str], str]:
|
93 |
raise NotImplementedError
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
94 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
95 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
96 |
class GPTChat(ModelBase):
|
97 |
def __init__(self, model_name: str):
|
98 |
self.name = model_name
|
@@ -106,6 +177,9 @@ class GPT4(GPTChat):
|
|
106 |
def __init__(self):
|
107 |
super().__init__("gpt-4")
|
108 |
|
|
|
|
|
|
|
109 |
|
110 |
class GPT35(GPTChat):
|
111 |
def __init__(self):
|
@@ -117,4 +191,151 @@ class GPTDavinci(ModelBase):
|
|
117 |
self.name = model_name
|
118 |
|
119 |
def generate(self, prompt: str, max_tokens: int = 1024, stop_strs: Optional[List[str]] = None, temperature: float = 0, num_comps=1) -> Union[List[str], str]:
|
120 |
-
return gpt_completion(self.name, prompt, max_tokens, stop_strs, temperature, num_comps)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
wait_random_exponential, # type: ignore
|
8 |
)
|
9 |
import openai
|
10 |
+
import requests
|
11 |
+
import json
|
12 |
+
import os
|
13 |
+
from groq import Groq
|
14 |
|
15 |
MessageRole = Literal["system", "user", "assistant"]
|
16 |
|
|
|
58 |
@retry(wait=wait_random_exponential(min=1, max=180), stop=stop_after_attempt(6))
|
59 |
def gpt_chat(
|
60 |
model: str,
|
61 |
+
messages: List[Message],
|
62 |
max_tokens: int = 1024,
|
63 |
temperature: float = 0.0,
|
64 |
num_comps=1,
|
65 |
) -> Union[List[str], str]:
|
66 |
+
response = openai.ChatCompletion.create(
|
67 |
+
model=model,
|
68 |
+
messages=[dataclasses.asdict(message) for message in messages],
|
69 |
+
max_tokens=max_tokens,
|
70 |
+
temperature=temperature,
|
71 |
+
top_p=1,
|
72 |
+
frequency_penalty=0.0,
|
73 |
+
presence_penalty=0.0,
|
74 |
+
n=num_comps,
|
75 |
+
)
|
76 |
+
if num_comps == 1:
|
77 |
+
return response.choices[0].message.content # type: ignore
|
78 |
+
print("temp", temperature)
|
79 |
+
return [choice.message.content for choice in response.choices] # type: ignore
|
80 |
|
|
|
|
|
|
|
81 |
|
82 |
class ModelBase():
|
83 |
def __init__(self, name: str):
|
|
|
92 |
|
93 |
def generate(self, prompt: str, max_tokens: int = 1024, stop_strs: Optional[List[str]] = None, temperature: float = 0.0, num_comps=1) -> Union[List[str], str]:
|
94 |
raise NotImplementedError
|
95 |
+
|
96 |
+
class GroqBase():
|
97 |
+
def __init__(self):
|
98 |
+
self.is_chat = True
|
99 |
+
self.client = Groq(
|
100 |
+
api_key=os.environ.get("GROQ_API_KEY"),
|
101 |
+
)
|
102 |
+
|
103 |
+
def generate_chat(self, messages: List[Message], max_tokens: int = 1024, temperature: float = 0.2, num_comps: int = 1) -> Union[List[str], str]:
|
104 |
+
resps = []
|
105 |
+
for i in range(num_comps):
|
106 |
+
chat_completion = self.client.chat.completions.create(
|
107 |
+
messages=[dataclasses.asdict(message) for message in messages],
|
108 |
+
model="llama3-8b-8192",
|
109 |
+
)
|
110 |
|
111 |
+
response_text = chat_completion.choices[0].message.content
|
112 |
+
resps.append(response_text)
|
113 |
+
|
114 |
+
if num_comps == 1:
|
115 |
+
return resps[0]
|
116 |
+
else:
|
117 |
+
return resps
|
118 |
+
|
119 |
+
|
120 |
+
class Samba():
|
121 |
+
def __init__(self):
|
122 |
+
self.is_chat = True
|
123 |
+
|
124 |
+
def generate_chat(self, messages: List[Message], max_tokens: int = 1024, temperature: float = 0.2, num_comps: int = 1) -> Union[List[str], str]:
|
125 |
+
resps = []
|
126 |
+
for i in range(num_comps):
|
127 |
+
payload = {
|
128 |
+
"inputs": [dataclasses.asdict(message) for message in messages],
|
129 |
+
"params": {
|
130 |
+
"do_sample": {"type": "bool", "value": True},
|
131 |
+
"max_tokens_allowed_in_completion": {"type": "int", "value": 500},
|
132 |
+
"min_token_capacity_for_completion": {"type": "int", "value": 2},
|
133 |
+
"temperature": {"type": "float", "value": 0.7},
|
134 |
+
"top_p": {"type": "float", "value": 0.1},
|
135 |
+
"top_k": {"type": "int", "value": 40},
|
136 |
+
"skip_special_token": {"type": "bool", "value": True},
|
137 |
+
"repetition_penalty": {"type": "float", "value": 1.15},
|
138 |
+
"stop_sequences": {"type": "list", "value": ["[INST]", "[INST]", "[/INST]", "[/INST]"]}
|
139 |
+
},
|
140 |
+
"expert": "llama3-8b"
|
141 |
+
}
|
142 |
+
url = 'https://kjddazcq2e2wzvzv.snova.ai/api/v1/chat/completion'
|
143 |
+
headers = {
|
144 |
+
"Authorization": "Basic bGlnaHRuaW5nOlUyM3pMcFlHY3dmVzRzUGFy",
|
145 |
+
"Content-Type": "application/json"
|
146 |
+
}
|
147 |
+
post_response = requests.post(url, json=payload, headers=headers, stream=True)
|
148 |
|
149 |
+
response_text = ""
|
150 |
+
for line in post_response.iter_lines():
|
151 |
+
if line.startswith(b"data: "):
|
152 |
+
data_str = line.decode('utf-8')[6:]
|
153 |
+
try:
|
154 |
+
line_json = json.loads(data_str)
|
155 |
+
content = line_json.get("stream_token", "")
|
156 |
+
if content:
|
157 |
+
response_text += content
|
158 |
+
except json.JSONDecodeError as e:
|
159 |
+
pass
|
160 |
+
resps.append(response_text)
|
161 |
+
|
162 |
+
if num_comps == 1:
|
163 |
+
return resps[0]
|
164 |
+
else:
|
165 |
+
return resps
|
166 |
+
|
167 |
class GPTChat(ModelBase):
|
168 |
def __init__(self, model_name: str):
|
169 |
self.name = model_name
|
|
|
177 |
def __init__(self):
|
178 |
super().__init__("gpt-4")
|
179 |
|
180 |
+
class GPT4o(GPTChat):
|
181 |
+
def __init__(self):
|
182 |
+
super().__init__("gpt-4o")
|
183 |
|
184 |
class GPT35(GPTChat):
|
185 |
def __init__(self):
|
|
|
191 |
self.name = model_name
|
192 |
|
193 |
def generate(self, prompt: str, max_tokens: int = 1024, stop_strs: Optional[List[str]] = None, temperature: float = 0, num_comps=1) -> Union[List[str], str]:
|
194 |
+
return gpt_completion(self.name, prompt, max_tokens, stop_strs, temperature, num_comps)
|
195 |
+
|
196 |
+
|
197 |
+
class HFModelBase(ModelBase):
|
198 |
+
"""
|
199 |
+
Base for huggingface chat models
|
200 |
+
"""
|
201 |
+
|
202 |
+
def __init__(self, model_name: str, model, tokenizer, eos_token_id=None):
|
203 |
+
self.name = model_name
|
204 |
+
self.model = model
|
205 |
+
self.tokenizer = tokenizer
|
206 |
+
self.eos_token_id = eos_token_id if eos_token_id is not None else self.tokenizer.eos_token_id
|
207 |
+
self.is_chat = True
|
208 |
+
|
209 |
+
def generate_chat(self, messages: List[Message], max_tokens: int = 1024, temperature: float = 0.2, num_comps: int = 1) -> Union[List[str], str]:
|
210 |
+
# NOTE: HF does not like temp of 0.0.
|
211 |
+
if temperature < 0.0001:
|
212 |
+
temperature = 0.0001
|
213 |
+
|
214 |
+
prompt = self.prepare_prompt(messages)
|
215 |
+
|
216 |
+
outputs = self.model.generate(
|
217 |
+
prompt,
|
218 |
+
max_new_tokens=min(
|
219 |
+
max_tokens, self.model.config.max_position_embeddings),
|
220 |
+
use_cache=True,
|
221 |
+
do_sample=True,
|
222 |
+
temperature=temperature,
|
223 |
+
top_p=0.95,
|
224 |
+
eos_token_id=self.eos_token_id,
|
225 |
+
num_return_sequences=num_comps,
|
226 |
+
)
|
227 |
+
|
228 |
+
outs = self.tokenizer.batch_decode(outputs, skip_special_tokens=False)
|
229 |
+
assert isinstance(outs, list)
|
230 |
+
for i, out in enumerate(outs):
|
231 |
+
assert isinstance(out, str)
|
232 |
+
outs[i] = self.extract_output(out)
|
233 |
+
|
234 |
+
if len(outs) == 1:
|
235 |
+
return outs[0] # type: ignore
|
236 |
+
else:
|
237 |
+
return outs # type: ignore
|
238 |
+
|
239 |
+
def prepare_prompt(self, messages: List[Message]):
|
240 |
+
raise NotImplementedError
|
241 |
+
|
242 |
+
def extract_output(self, output: str) -> str:
|
243 |
+
raise NotImplementedError
|
244 |
+
|
245 |
+
|
246 |
+
|
247 |
+
class StarChat(HFModelBase):
|
248 |
+
def __init__(self):
|
249 |
+
import torch
|
250 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
251 |
+
model = AutoModelForCausalLM.from_pretrained(
|
252 |
+
"HuggingFaceH4/starchat-beta",
|
253 |
+
torch_dtype=torch.bfloat16,
|
254 |
+
device_map="auto",
|
255 |
+
)
|
256 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
257 |
+
"HuggingFaceH4/starchat-beta",
|
258 |
+
)
|
259 |
+
super().__init__("starchat", model, tokenizer, eos_token_id=49155)
|
260 |
+
|
261 |
+
def prepare_prompt(self, messages: List[Message]):
|
262 |
+
prompt = ""
|
263 |
+
for i, message in enumerate(messages):
|
264 |
+
prompt += f"<|{message.role}|>\n{message.content}\n<|end|>\n"
|
265 |
+
if i == len(messages) - 1:
|
266 |
+
prompt += "<|assistant|>\n"
|
267 |
+
|
268 |
+
return self.tokenizer.encode(prompt, return_tensors="pt").to(self.model.device)
|
269 |
+
|
270 |
+
def extract_output(self, output: str) -> str:
|
271 |
+
out = output.split("<|assistant|>")[1]
|
272 |
+
if out.endswith("<|end|>"):
|
273 |
+
out = out[:-len("<|end|>")]
|
274 |
+
|
275 |
+
return out
|
276 |
+
|
277 |
+
|
278 |
+
class CodeLlama(HFModelBase):
|
279 |
+
B_INST, E_INST = "[INST]", "[/INST]"
|
280 |
+
B_SYS, E_SYS = "<<SYS>>\n", "\n<</SYS>>\n\n"
|
281 |
+
|
282 |
+
DEFAULT_SYSTEM_PROMPT = """\
|
283 |
+
You are a helpful, respectful and honest assistant. Always answer as helpfully as possible, while being safe. Your answers should not include any harmful, unethical, racist, sexist, toxic, dangerous, or illegal content. Please ensure that your responses are socially unbiased and positive in nature.
|
284 |
+
|
285 |
+
If a question does not make any sense, or is not factually coherent, explain why instead of answering something not correct. If you don't know the answer to a question, please don't share false information."""
|
286 |
+
|
287 |
+
def __init__(self, version: Literal["34b", "13b", "7b"] = "34b"):
|
288 |
+
import torch
|
289 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
290 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
291 |
+
f"codellama/CodeLlama-{version}-Instruct-hf",
|
292 |
+
add_eos_token=True,
|
293 |
+
add_bos_token=True,
|
294 |
+
padding_side='left'
|
295 |
+
)
|
296 |
+
model = AutoModelForCausalLM.from_pretrained(
|
297 |
+
f"codellama/CodeLlama-{version}-Instruct-hf",
|
298 |
+
torch_dtype=torch.bfloat16,
|
299 |
+
device_map="auto",
|
300 |
+
)
|
301 |
+
super().__init__("codellama", model, tokenizer)
|
302 |
+
|
303 |
+
def prepare_prompt(self, messages: List[Message]):
|
304 |
+
if messages[0].role != "system":
|
305 |
+
messages = [
|
306 |
+
Message(role="system", content=self.DEFAULT_SYSTEM_PROMPT)
|
307 |
+
] + messages
|
308 |
+
messages = [
|
309 |
+
Message(role=messages[1].role, content=self.B_SYS +
|
310 |
+
messages[0].content + self.E_SYS + messages[1].content)
|
311 |
+
] + messages[2:]
|
312 |
+
assert all([msg.role == "user" for msg in messages[::2]]) and all(
|
313 |
+
[msg.role == "assistant" for msg in messages[1::2]]
|
314 |
+
), (
|
315 |
+
"model only supports 'system', 'user' and 'assistant' roles, "
|
316 |
+
"starting with 'system', then 'user' and alternating (u/a/u/a/u...)"
|
317 |
+
)
|
318 |
+
messages_tokens: List[int] = sum(
|
319 |
+
[
|
320 |
+
self.tokenizer.encode(
|
321 |
+
f"{self.B_INST} {(prompt.content).strip()} {self.E_INST} {(answer.content).strip()} ",
|
322 |
+
)
|
323 |
+
for prompt, answer in zip(
|
324 |
+
messages[::2],
|
325 |
+
messages[1::2],
|
326 |
+
)
|
327 |
+
],
|
328 |
+
[],
|
329 |
+
)
|
330 |
+
assert messages[-1].role == "user", f"Last message must be from user, got {messages[-1].role}"
|
331 |
+
messages_tokens += self.tokenizer.encode(
|
332 |
+
f"{self.B_INST} {(messages[-1].content).strip()} {self.E_INST}",
|
333 |
+
)
|
334 |
+
# remove eos token from last message
|
335 |
+
messages_tokens = messages_tokens[:-1]
|
336 |
+
import torch
|
337 |
+
return torch.tensor([messages_tokens]).to(self.model.device)
|
338 |
+
|
339 |
+
def extract_output(self, output: str) -> str:
|
340 |
+
out = output.split("[/INST]")[-1].split("</s>")[0].strip()
|
341 |
+
return out
|