import streamlit as st import openai import os import sys import argparse sys.path.append('./lats') from lats_main import lats_main st.set_page_config(layout="wide") # Initialize session state variables if they don't exist. if 'response_content' not in st.session_state: st.session_state.response_content = None # Creating main columns for the chat and runtime notifications chat_col = st.container() chat_col.title("CodeLATS") description = """This demo is an implementation of Language Agent Tree Search (LATS) (https://arxiv.org/abs/2310.04406) built specifically for generating code in the form of python functions. It achieves :green[**state-of-the-art**] results on HumanEval with a :green[**94.4% pass@1 rate**] on GPT-4. Listed below is an example programming problem (https://leetcode.com/problems/longest-valid-parentheses/description/) to get started with. ```python Given a string containing just the characters '(' and ')', return the length of the longest valid (well-formed) parentheses substring ``` :red[**NOTE:**] On average a call for a HumanEval or Leetcode question will cost around 5-30 cents on GPT-4, using the default parameters. This value may change depending on problem difficulty and parameters. """ chat_col.markdown(description) sidebar = st.sidebar # Runtime Section runtime_container = st.container() # Parameters Section sidebar.title("**A Lapis Labs Project** (https://lapis.rocks/)") parameters_section = sidebar.expander("Parameters", expanded=False) tree_width = parameters_section.number_input("Tree Width", min_value=1, max_value=5, value=1) tree_depth = parameters_section.number_input("Tree Depth", min_value=1, max_value=8, value=3) iterations = parameters_section.number_input("Iterations", min_value=1, max_value=4, value=2) key = st.sidebar.text_input("Enter your OpenAI Api Key:", type="password") sidebar.markdown('
', unsafe_allow_html=True) with sidebar: runtime_container = st.container() runtime_container.empty() runtime_messages = [] def make_args(instruction, tree_depth, tree_width, iterations): parser = argparse.ArgumentParser() parser.add_argument("--strategy", default="mcts", help="Strategy to use") parser.add_argument("--language", default="py", help="Programming language") parser.add_argument("--model", default="samba", help="Model type") parser.add_argument("--max_iters", default=iterations, help="Maximum iterations") parser.add_argument("--instruction", default=instruction, help="Instruction text") parser.add_argument("--verbose", action="store_true", help="Verbose output") parser.add_argument("--is_leetcode", action='store_true', help="To run the leetcode benchmark") # Temporary parser.add_argument("--n_samples", type=int, help="The number of nodes added during expansion", default=tree_width) parser.add_argument("--depth", type=int, help="Tree depth", default=tree_depth) args = parser.parse_args() return args def run_querry(): if user_input: # Create a new container for each subsequent message runtime_container.write("Initiating process...") # Make it so that prints go to runtime_container writes instead old_stdout = sys.stdout sys.stdout = runtime_container with chat_col: with st.spinner('Running...'): args = make_args(user_input, tree_depth, tree_width, iterations) # main call response = lats_main(args) sys.stdout = old_stdout runtime_container.write("Response fetched.") chat_col.markdown('
', unsafe_allow_html=True) chat_col.write(f"```python\n{response} \n") return response # User input section at the bottom of the page with chat_col: user_input = st.text_area("Enter your message here:", placeholder="Type your message here...", label_visibility="collapsed") button = st.button("Send") if button: if user_input == "": st.warning("Missing a coding problem") fail = True if (not fail): openai.api_key = key run_querry()