File size: 17,013 Bytes
5bd623f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
from __future__ import absolute_import, division, print_function

import random
import copy
import io
import os
import numpy as np
from PIL import Image
import skimage.transform
from collections import Counter


import torch
import torch.utils.data as data
from torch import Tensor
from torch.utils.data import Dataset
from torchvision import transforms
from torchvision.transforms.functional import InterpolationMode as IMode

import utils

class ImgDset(Dataset):
    """Customize the data set loading function and prepare low/high resolution image data in advance.

    Args:
        dataroot         (str): Training data set address
        image_size       (int): High resolution image size
        upscale_factor   (int): Image magnification
        mode             (str): Data set loading method, the training data set is for data enhancement,
                             and the verification data set is not for data enhancement

    """

    def __init__(self, dataroot: str, image_size: int, upscale_factor: int, mode: str) -> None:
        super(ImgDset, self).__init__()
        self.filenames = [os.path.join(dataroot, x) for x in os.listdir(dataroot)]

        if mode == "train":
            self.hr_transforms = transforms.Compose([
                transforms.RandomCrop(image_size),
                transforms.RandomRotation(90),
                transforms.RandomHorizontalFlip(0.5),
            ])
        else:
            self.hr_transforms = transforms.Resize(image_size)

        self.lr_transforms = transforms.Resize((image_size[0]//upscale_factor, image_size[1]//upscale_factor), interpolation=IMode.BICUBIC, antialias=True)

    def __getitem__(self, batch_index: int) -> [Tensor, Tensor]:
        # Read a batch of image data
        image = Image.open(self.filenames[batch_index])

        # Transform image
        hr_image = self.hr_transforms(image)
        lr_image = self.lr_transforms(hr_image)

        # Convert image data into Tensor stream format (PyTorch).
        # Note: The range of input and output is between [0, 1]
        lr_tensor = utils.image2tensor(lr_image, range_norm=False, half=False)
        hr_tensor = utils.image2tensor(hr_image, range_norm=False, half=False)

        return lr_tensor, hr_tensor

    def __len__(self) -> int:
        return len(self.filenames)
    

class PairedImages_w_nameList(Dataset):
    '''
    can act as supervised or un-supervised based on flists
    '''
    def __init__(self, flist1, flist2, transform1=None, transform2=None, do_aug=False):
        self.flist1 = flist1
        self.flist2 = flist2
        self.transform1 = transform1
        self.transform2 = transform2
        self.do_aug = do_aug
    def __getitem__(self, index):
        impath1 = self.flist1[index]
        img1 = Image.open(impath1).convert('RGB')
        impath2 = self.flist2[index]
        img2 = Image.open(impath2).convert('RGB')
        
        img1 = utils.image2tensor(img1, range_norm=False, half=False)
        img2 = utils.image2tensor(img2, range_norm=False, half=False)
        
        if self.transform1 is not None:
            img1 = self.transform1(img1)
        if self.transform2 is not None:
            img2 = self.transform2(img2)
        
        return img1, img2
    def __len__(self):
        return len(self.flist1)
    
class PairedImages_w_nameList_npy(Dataset):
    '''
    can act as supervised or un-supervised based on flists
    '''
    def __init__(self, flist1, flist2, transform1=None, transform2=None, do_aug=False):
        self.flist1 = flist1
        self.flist2 = flist2
        self.transform1 = transform1
        self.transform2 = transform2
        self.do_aug = do_aug
    def __getitem__(self, index):
        impath1 = self.flist1[index]
        img1 = np.load(impath1)
        impath2 = self.flist2[index]
        img2 = np.load(impath2)
        
        if self.transform1 is not None:
            img1 = self.transform1(img1)
        if self.transform2 is not None:
            img2 = self.transform2(img2)
        
        return img1, img2
    def __len__(self):
        return len(self.flist1)

# def call_paired():
#     root1='./GOPRO_3840FPS_AVG_3-21/train/blur/'
#     root2='./GOPRO_3840FPS_AVG_3-21/train/sharp/'

#     flist1=glob.glob(root1+'/*/*.png')
#     flist2=glob.glob(root2+'/*/*.png')

#     dset = PairedImages_w_nameList(root1,root2,flist1,flist2)

#### KITTI depth

def load_velodyne_points(filename):
    """Load 3D point cloud from KITTI file format
    (adapted from https://github.com/hunse/kitti)
    """
    points = np.fromfile(filename, dtype=np.float32).reshape(-1, 4)
    points[:, 3] = 1.0  # homogeneous
    return points


def read_calib_file(path):
    """Read KITTI calibration file
    (from https://github.com/hunse/kitti)
    """
    float_chars = set("0123456789.e+- ")
    data = {}
    with open(path, 'r') as f:
        for line in f.readlines():
            key, value = line.split(':', 1)
            value = value.strip()
            data[key] = value
            if float_chars.issuperset(value):
                # try to cast to float array
                try:
                    data[key] = np.array(list(map(float, value.split(' '))))
                except ValueError:
                    # casting error: data[key] already eq. value, so pass
                    pass

    return data


def sub2ind(matrixSize, rowSub, colSub):
    """Convert row, col matrix subscripts to linear indices
    """
    m, n = matrixSize
    return rowSub * (n-1) + colSub - 1


def generate_depth_map(calib_dir, velo_filename, cam=2, vel_depth=False):
    """Generate a depth map from velodyne data
    """
    # load calibration files
    cam2cam = read_calib_file(os.path.join(calib_dir, 'calib_cam_to_cam.txt'))
    velo2cam = read_calib_file(os.path.join(calib_dir, 'calib_velo_to_cam.txt'))
    velo2cam = np.hstack((velo2cam['R'].reshape(3, 3), velo2cam['T'][..., np.newaxis]))
    velo2cam = np.vstack((velo2cam, np.array([0, 0, 0, 1.0])))

    # get image shape
    im_shape = cam2cam["S_rect_02"][::-1].astype(np.int32)

    # compute projection matrix velodyne->image plane
    R_cam2rect = np.eye(4)
    R_cam2rect[:3, :3] = cam2cam['R_rect_00'].reshape(3, 3)
    P_rect = cam2cam['P_rect_0'+str(cam)].reshape(3, 4)
    P_velo2im = np.dot(np.dot(P_rect, R_cam2rect), velo2cam)

    # load velodyne points and remove all behind image plane (approximation)
    # each row of the velodyne data is forward, left, up, reflectance
    velo = load_velodyne_points(velo_filename)
    velo = velo[velo[:, 0] >= 0, :]

    # project the points to the camera
    velo_pts_im = np.dot(P_velo2im, velo.T).T
    velo_pts_im[:, :2] = velo_pts_im[:, :2] / velo_pts_im[:, 2][..., np.newaxis]

    if vel_depth:
        velo_pts_im[:, 2] = velo[:, 0]

    # check if in bounds
    # use minus 1 to get the exact same value as KITTI matlab code
    velo_pts_im[:, 0] = np.round(velo_pts_im[:, 0]) - 1
    velo_pts_im[:, 1] = np.round(velo_pts_im[:, 1]) - 1
    val_inds = (velo_pts_im[:, 0] >= 0) & (velo_pts_im[:, 1] >= 0)
    val_inds = val_inds & (velo_pts_im[:, 0] < im_shape[1]) & (velo_pts_im[:, 1] < im_shape[0])
    velo_pts_im = velo_pts_im[val_inds, :]

    # project to image
    depth = np.zeros((im_shape[:2]))
    depth[velo_pts_im[:, 1].astype(np.int), velo_pts_im[:, 0].astype(np.int)] = velo_pts_im[:, 2]

    # find the duplicate points and choose the closest depth
    inds = sub2ind(depth.shape, velo_pts_im[:, 1], velo_pts_im[:, 0])
    dupe_inds = [item for item, count in Counter(inds).items() if count > 1]
    for dd in dupe_inds:
        pts = np.where(inds == dd)[0]
        x_loc = int(velo_pts_im[pts[0], 0])
        y_loc = int(velo_pts_im[pts[0], 1])
        depth[y_loc, x_loc] = velo_pts_im[pts, 2].min()
    depth[depth < 0] = 0

    return depth

def pil_loader(path):
    # open path as file to avoid ResourceWarning
    # (https://github.com/python-pillow/Pillow/issues/835)
    with open(path, 'rb') as f:
        with Image.open(f) as img:
            return img.convert('RGB')


class MonoDataset(data.Dataset):
    """Superclass for monocular dataloaders

    Args:
        data_path
        filenames
        height
        width
        frame_idxs
        num_scales
        is_train
        img_ext
    """
    def __init__(self,
                 data_path,
                 filenames,
                 height,
                 width,
                 frame_idxs,
                 num_scales,
                 is_train=False,
                 img_ext='.jpg'):
        super(MonoDataset, self).__init__()

        self.data_path = data_path
        self.filenames = filenames
        self.height = height
        self.width = width
        self.num_scales = num_scales
        self.interp = Image.ANTIALIAS

        self.frame_idxs = frame_idxs

        self.is_train = is_train
        self.img_ext = img_ext

        self.loader = pil_loader
        self.to_tensor = transforms.ToTensor()

        # We need to specify augmentations differently in newer versions of torchvision.
        # We first try the newer tuple version; if this fails we fall back to scalars
        try:
            self.brightness = (0.8, 1.2)
            self.contrast = (0.8, 1.2)
            self.saturation = (0.8, 1.2)
            self.hue = (-0.1, 0.1)
            transforms.ColorJitter.get_params(
                self.brightness, self.contrast, self.saturation, self.hue)
        except TypeError:
            self.brightness = 0.2
            self.contrast = 0.2
            self.saturation = 0.2
            self.hue = 0.1

        self.resize = {}
        for i in range(self.num_scales):
            s = 2 ** i
            self.resize[i] = transforms.Resize((self.height // s, self.width // s),
                                               interpolation=self.interp)

        self.load_depth = self.check_depth()

    def preprocess(self, inputs, color_aug):
        """Resize colour images to the required scales and augment if required

        We create the color_aug object in advance and apply the same augmentation to all
        images in this item. This ensures that all images input to the pose network receive the
        same augmentation.
        """
        for k in list(inputs):
            frame = inputs[k]
            if "color" in k:
                n, im, i = k
                for i in range(self.num_scales):
                    inputs[(n, im, i)] = self.resize[i](inputs[(n, im, i - 1)])

        for k in list(inputs):
            f = inputs[k]
            if "color" in k:
                n, im, i = k
                inputs[(n, im, i)] = self.to_tensor(f)
                inputs[(n + "_aug", im, i)] = self.to_tensor(color_aug(f))

    def __len__(self):
        return len(self.filenames)

    def __getitem__(self, index):
        """Returns a single training item from the dataset as a dictionary.

        Values correspond to torch tensors.
        Keys in the dictionary are either strings or tuples:

            ("color", <frame_id>, <scale>)          for raw colour images,
            ("color_aug", <frame_id>, <scale>)      for augmented colour images,
            ("K", scale) or ("inv_K", scale)        for camera intrinsics,
            "stereo_T"                              for camera extrinsics, and
            "depth_gt"                              for ground truth depth maps.

        <frame_id> is either:
            an integer (e.g. 0, -1, or 1) representing the temporal step relative to 'index',
        or
            "s" for the opposite image in the stereo pair.

        <scale> is an integer representing the scale of the image relative to the fullsize image:
            -1      images at native resolution as loaded from disk
            0       images resized to (self.width,      self.height     )
            1       images resized to (self.width // 2, self.height // 2)
            2       images resized to (self.width // 4, self.height // 4)
            3       images resized to (self.width // 8, self.height // 8)
        """
        inputs = {}

        do_color_aug = self.is_train and random.random() > 0.5
        do_flip = self.is_train and random.random() > 0.5

        line = self.filenames[index].split()
        folder = line[0]

        if len(line) == 3:
            frame_index = int(line[1])
        else:
            frame_index = 0

        if len(line) == 3:
            side = line[2]
        else:
            side = None

        for i in self.frame_idxs:
            if i == "s":
                other_side = {"r": "l", "l": "r"}[side]
                inputs[("color", i, -1)] = self.get_color(folder, frame_index, other_side, do_flip)
            else:
                inputs[("color", i, -1)] = self.get_color(folder, frame_index + i, side, do_flip)

        # adjusting intrinsics to match each scale in the pyramid
        for scale in range(self.num_scales):
            K = self.K.copy()

            K[0, :] *= self.width // (2 ** scale)
            K[1, :] *= self.height // (2 ** scale)

            inv_K = np.linalg.pinv(K)

            inputs[("K", scale)] = torch.from_numpy(K)
            inputs[("inv_K", scale)] = torch.from_numpy(inv_K)

        if do_color_aug:
            color_aug = transforms.ColorJitter.get_params(
                self.brightness, self.contrast, self.saturation, self.hue)
        else:
            color_aug = (lambda x: x)

        self.preprocess(inputs, color_aug)

        for i in self.frame_idxs:
            del inputs[("color", i, -1)]
            del inputs[("color_aug", i, -1)]

        if self.load_depth:
            depth_gt = self.get_depth(folder, frame_index, side, do_flip)
            inputs["depth_gt"] = np.expand_dims(depth_gt, 0)
            inputs["depth_gt"] = torch.from_numpy(inputs["depth_gt"].astype(np.float32))

        if "s" in self.frame_idxs:
            stereo_T = np.eye(4, dtype=np.float32)
            baseline_sign = -1 if do_flip else 1
            side_sign = -1 if side == "l" else 1
            stereo_T[0, 3] = side_sign * baseline_sign * 0.1

            inputs["stereo_T"] = torch.from_numpy(stereo_T)

        return inputs

    def get_color(self, folder, frame_index, side, do_flip):
        raise NotImplementedError

    def check_depth(self):
        raise NotImplementedError

    def get_depth(self, folder, frame_index, side, do_flip):
        raise NotImplementedError

class KITTIDataset(MonoDataset):
    """Superclass for different types of KITTI dataset loaders
    """
    def __init__(self, *args, **kwargs):
        super(KITTIDataset, self).__init__(*args, **kwargs)

        # NOTE: Make sure your intrinsics matrix is *normalized* by the original image size.
        # To normalize you need to scale the first row by 1 / image_width and the second row
        # by 1 / image_height. Monodepth2 assumes a principal point to be exactly centered.
        # If your principal point is far from the center you might need to disable the horizontal
        # flip augmentation.
        self.K = np.array([[0.58, 0, 0.5, 0],
                           [0, 1.92, 0.5, 0],
                           [0, 0, 1, 0],
                           [0, 0, 0, 1]], dtype=np.float32)

        self.full_res_shape = (1242, 375)
        self.side_map = {"2": 2, "3": 3, "l": 2, "r": 3}

    def check_depth(self):
        line = self.filenames[0].split()
        scene_name = line[0]
        frame_index = int(line[1])

        velo_filename = os.path.join(
            self.data_path,
            scene_name,
            "velodyne_points/data/{:010d}.bin".format(int(frame_index)))

        return os.path.isfile(velo_filename)

    def get_color(self, folder, frame_index, side, do_flip):
        color = self.loader(self.get_image_path(folder, frame_index, side))

        if do_flip:
            color = color.transpose(Image.FLIP_LEFT_RIGHT)

        return color


class KITTIDepthDataset(KITTIDataset):
    """KITTI dataset which uses the updated ground truth depth maps
    """
    def __init__(self, *args, **kwargs):
        super(KITTIDepthDataset, self).__init__(*args, **kwargs)

    def get_image_path(self, folder, frame_index, side):
        f_str = "{:010d}{}".format(frame_index, self.img_ext)
        image_path = os.path.join(
            self.data_path,
            folder,
            "image_0{}/data".format(self.side_map[side]),
            f_str)
        return image_path

    def get_depth(self, folder, frame_index, side, do_flip):
        f_str = "{:010d}.png".format(frame_index)
        depth_path = os.path.join(
            self.data_path,
            folder,
            "proj_depth/groundtruth/image_0{}".format(self.side_map[side]),
            f_str)

        depth_gt = Image.open(depth_path)
        depth_gt = depth_gt.resize(self.full_res_shape, Image.NEAREST)
        depth_gt = np.array(depth_gt).astype(np.float32) / 256

        if do_flip:
            depth_gt = np.fliplr(depth_gt)

        return depth_gt