File size: 17,334 Bytes
5bd623f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
import torch
import torch.nn as nn
import torch.nn.functional as F
import functools

### components
class ResConv(nn.Module):
    """
    Residual convolutional block, where
    convolutional block consists: (convolution => [BN] => ReLU) * 3
    residual connection adds the input to the output
    """
    def __init__(self, in_channels, out_channels, mid_channels=None):
        super().__init__()
        if not mid_channels:
            mid_channels = out_channels
        self.double_conv = nn.Sequential(
            nn.Conv2d(in_channels, mid_channels, kernel_size=3, padding=1),
            nn.BatchNorm2d(mid_channels),
            nn.ReLU(inplace=True),
            nn.Conv2d(mid_channels, mid_channels, kernel_size=3, padding=1),
            nn.BatchNorm2d(mid_channels),
            nn.ReLU(inplace=True),
            nn.Conv2d(mid_channels, out_channels, kernel_size=3, padding=1),
            nn.BatchNorm2d(out_channels),
            nn.ReLU(inplace=True)
        )
        self.double_conv1 = nn.Sequential(
            nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1),
            nn.BatchNorm2d(out_channels),
            nn.ReLU(inplace=True),
        )
    def forward(self, x):
        x_in = self.double_conv1(x)
        x1 = self.double_conv(x)
        return self.double_conv(x) + x_in

class Down(nn.Module):
    """Downscaling with maxpool then Resconv"""
    def __init__(self, in_channels, out_channels):
        super().__init__()
        self.maxpool_conv = nn.Sequential(
            nn.MaxPool2d(2),
            ResConv(in_channels, out_channels)
        )
    def forward(self, x):
        return self.maxpool_conv(x)

class Up(nn.Module):
	"""Upscaling then double conv"""
	def __init__(self, in_channels, out_channels, bilinear=True):
		super().__init__()
		# if bilinear, use the normal convolutions to reduce the number of channels
		if bilinear:
			self.up = nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True)
			self.conv = ResConv(in_channels, out_channels, in_channels // 2)
		else:
			self.up = nn.ConvTranspose2d(in_channels , in_channels // 2, kernel_size=2, stride=2)
			self.conv = ResConv(in_channels, out_channels)
	def forward(self, x1, x2):
		x1 = self.up(x1)
		# input is CHW
		diffY = x2.size()[2] - x1.size()[2]
		diffX = x2.size()[3] - x1.size()[3]
		x1 = F.pad(
			x1, 
			[
				diffX // 2, diffX - diffX // 2,
				diffY // 2, diffY - diffY // 2
			]
		)
		# if you have padding issues, see
		# https://github.com/HaiyongJiang/U-Net-Pytorch-Unstructured-Buggy/commit/0e854509c2cea854e247a9c615f175f76fbb2e3a
		# https://github.com/xiaopeng-liao/Pytorch-UNet/commit/8ebac70e633bac59fc22bb5195e513d5832fb3bd
		x = torch.cat([x2, x1], dim=1)
		return self.conv(x)

class OutConv(nn.Module):
	def __init__(self, in_channels, out_channels):
		super(OutConv, self).__init__()
		self.conv = nn.Conv2d(in_channels, out_channels, kernel_size=1)
	def forward(self, x):
		# return F.relu(self.conv(x))
		return self.conv(x)

##### The composite networks
class UNet(nn.Module):
	def __init__(self, n_channels, out_channels, bilinear=True):
		super(UNet, self).__init__()
		self.n_channels = n_channels
		self.out_channels = out_channels
		self.bilinear = bilinear
		####
		self.inc = ResConv(n_channels, 64)
		self.down1 = Down(64, 128)
		self.down2 = Down(128, 256)
		self.down3 = Down(256, 512)
		factor = 2 if bilinear else 1
		self.down4 = Down(512, 1024 // factor)
		self.up1 = Up(1024, 512 // factor, bilinear)
		self.up2 = Up(512, 256 // factor, bilinear)
		self.up3 = Up(256, 128 // factor, bilinear)
		self.up4 = Up(128, 64, bilinear)
		self.outc = OutConv(64, out_channels)
	def forward(self, x):
		x1 = self.inc(x)
		x2 = self.down1(x1)
		x3 = self.down2(x2)
		x4 = self.down3(x3)
		x5 = self.down4(x4)
		x = self.up1(x5, x4)
		x = self.up2(x, x3)
		x = self.up3(x, x2)
		x = self.up4(x, x1)
		y = self.outc(x)
		return y

class CasUNet(nn.Module):
	def __init__(self, n_unet, io_channels, bilinear=True):
		super(CasUNet, self).__init__()
		self.n_unet = n_unet
		self.io_channels = io_channels
		self.bilinear = bilinear
		####
		self.unet_list = nn.ModuleList()
		for i in range(self.n_unet):
			self.unet_list.append(UNet(self.io_channels, self.io_channels, self.bilinear))
	def forward(self, x, dop=None):
		y = x
		for i in range(self.n_unet):
			if i==0:
				if dop is not None:
					y = F.dropout2d(self.unet_list[i](y), p=dop)
				else:
					y = self.unet_list[i](y)
			else:
				y = self.unet_list[i](y+x)
		return y

class CasUNet_2head(nn.Module):
	def __init__(self, n_unet, io_channels, bilinear=True):
		super(CasUNet_2head, self).__init__()
		self.n_unet = n_unet
		self.io_channels = io_channels
		self.bilinear = bilinear
		####
		self.unet_list = nn.ModuleList()
		for i in range(self.n_unet):
			if i != self.n_unet-1:
				self.unet_list.append(UNet(self.io_channels, self.io_channels, self.bilinear))
			else:
				self.unet_list.append(UNet_2head(self.io_channels, self.io_channels, self.bilinear))
	def forward(self, x):
		y = x
		for i in range(self.n_unet):
			if i==0:
				y = self.unet_list[i](y)
			else:
				y = self.unet_list[i](y+x)
		y_mean, y_sigma = y[0], y[1]
		return y_mean, y_sigma

class CasUNet_3head(nn.Module):
	def __init__(self, n_unet, io_channels, bilinear=True):
		super(CasUNet_3head, self).__init__()
		self.n_unet = n_unet
		self.io_channels = io_channels
		self.bilinear = bilinear
		####
		self.unet_list = nn.ModuleList()
		for i in range(self.n_unet):
			if i != self.n_unet-1:
				self.unet_list.append(UNet(self.io_channels, self.io_channels, self.bilinear))
			else:
				self.unet_list.append(UNet_3head(self.io_channels, self.io_channels, self.bilinear))
	def forward(self, x):
		y = x
		for i in range(self.n_unet):
			if i==0:
				y = self.unet_list[i](y)
			else:
				y = self.unet_list[i](y+x)
		y_mean, y_alpha, y_beta = y[0], y[1], y[2]
		return y_mean, y_alpha, y_beta

class UNet_2head(nn.Module):
	def __init__(self, n_channels, out_channels, bilinear=True):
		super(UNet_2head, self).__init__()
		self.n_channels = n_channels
		self.out_channels = out_channels
		self.bilinear = bilinear
		####
		self.inc = ResConv(n_channels, 64)
		self.down1 = Down(64, 128)
		self.down2 = Down(128, 256)
		self.down3 = Down(256, 512)
		factor = 2 if bilinear else 1
		self.down4 = Down(512, 1024 // factor)
		self.up1 = Up(1024, 512 // factor, bilinear)
		self.up2 = Up(512, 256 // factor, bilinear)
		self.up3 = Up(256, 128 // factor, bilinear)
		self.up4 = Up(128, 64, bilinear)
		#per pixel multiple channels may exist
		self.out_mean = OutConv(64, out_channels)
		#variance will always be a single number for a pixel
		self.out_var = nn.Sequential(
			OutConv(64, 128),
			OutConv(128, 1),
		)
	def forward(self, x):
		x1 = self.inc(x)
		x2 = self.down1(x1)
		x3 = self.down2(x2)
		x4 = self.down3(x3)
		x5 = self.down4(x4)
		x = self.up1(x5, x4)
		x = self.up2(x, x3)
		x = self.up3(x, x2)
		x = self.up4(x, x1)
		y_mean, y_var = self.out_mean(x), self.out_var(x)
		return y_mean, y_var

class UNet_3head(nn.Module):
	def __init__(self, n_channels, out_channels, bilinear=True):
		super(UNet_3head, self).__init__()
		self.n_channels = n_channels
		self.out_channels = out_channels
		self.bilinear = bilinear
		####
		self.inc = ResConv(n_channels, 64)
		self.down1 = Down(64, 128)
		self.down2 = Down(128, 256)
		self.down3 = Down(256, 512)
		factor = 2 if bilinear else 1
		self.down4 = Down(512, 1024 // factor)
		self.up1 = Up(1024, 512 // factor, bilinear)
		self.up2 = Up(512, 256 // factor, bilinear)
		self.up3 = Up(256, 128 // factor, bilinear)
		self.up4 = Up(128, 64, bilinear)
		#per pixel multiple channels may exist
		self.out_mean = OutConv(64, out_channels)
		#variance will always be a single number for a pixel
		self.out_alpha = nn.Sequential(
			OutConv(64, 128),
			OutConv(128, 1),
			nn.ReLU()
		)
		self.out_beta = nn.Sequential(
			OutConv(64, 128),
			OutConv(128, 1),
			nn.ReLU()
		)
	def forward(self, x):
		x1 = self.inc(x)
		x2 = self.down1(x1)
		x3 = self.down2(x2)
		x4 = self.down3(x3)
		x5 = self.down4(x4)
		x = self.up1(x5, x4)
		x = self.up2(x, x3)
		x = self.up3(x, x2)
		x = self.up4(x, x1)
		y_mean, y_alpha, y_beta = self.out_mean(x), \
		self.out_alpha(x), self.out_beta(x)
		return y_mean, y_alpha, y_beta

class ResidualBlock(nn.Module):
    def __init__(self, in_features):
        super(ResidualBlock, self).__init__()
        conv_block = [  
			nn.ReflectionPad2d(1),
			nn.Conv2d(in_features, in_features, 3),
			nn.InstanceNorm2d(in_features),
			nn.ReLU(inplace=True),
			nn.ReflectionPad2d(1),
			nn.Conv2d(in_features, in_features, 3),
			nn.InstanceNorm2d(in_features)
		]
        self.conv_block = nn.Sequential(*conv_block)
    def forward(self, x):
        return x + self.conv_block(x)

class Generator(nn.Module):
    def __init__(self, input_nc, output_nc, n_residual_blocks=9):
        super(Generator, self).__init__()
        # Initial convolution block       
        model = [
			nn.ReflectionPad2d(3), nn.Conv2d(input_nc, 64, 7),
            nn.InstanceNorm2d(64), nn.ReLU(inplace=True)
		]
        # Downsampling
        in_features = 64
        out_features = in_features*2
        for _ in range(2):
            model += [  
				nn.Conv2d(in_features, out_features, 3, stride=2, padding=1),
                nn.InstanceNorm2d(out_features),
                nn.ReLU(inplace=True) 
			]
            in_features = out_features
            out_features = in_features*2
        # Residual blocks
        for _ in range(n_residual_blocks):
            model += [ResidualBlock(in_features)]
        # Upsampling
        out_features = in_features//2
        for _ in range(2):
            model += [  
				nn.ConvTranspose2d(in_features, out_features, 3, stride=2, padding=1, output_padding=1),
				nn.InstanceNorm2d(out_features),
                nn.ReLU(inplace=True)
			]
            in_features = out_features
            out_features = in_features//2
        # Output layer
        model += [nn.ReflectionPad2d(3), nn.Conv2d(64, output_nc, 7), nn.Tanh()]
        self.model = nn.Sequential(*model)
    def forward(self, x):
        return self.model(x)
    
    
class ResnetGenerator(nn.Module):
    """Resnet-based generator that consists of Resnet blocks between a few downsampling/upsampling operations.
    We adapt Torch code and idea from Justin Johnson's neural style transfer project(https://github.com/jcjohnson/fast-neural-style)
    """

    def __init__(self, input_nc, output_nc, ngf=64, norm_layer=nn.BatchNorm2d, use_dropout=False, n_blocks=6, padding_type='reflect'):
        """Construct a Resnet-based generator
        Parameters:
            input_nc (int)      -- the number of channels in input images
            output_nc (int)     -- the number of channels in output images
            ngf (int)           -- the number of filters in the last conv layer
            norm_layer          -- normalization layer
            use_dropout (bool)  -- if use dropout layers
            n_blocks (int)      -- the number of ResNet blocks
            padding_type (str)  -- the name of padding layer in conv layers: reflect | replicate | zero
        """
        assert(n_blocks >= 0)
        super(ResnetGenerator, self).__init__()
        if type(norm_layer) == functools.partial:
            use_bias = norm_layer.func == nn.InstanceNorm2d
        else:
            use_bias = norm_layer == nn.InstanceNorm2d

        model = [nn.ReflectionPad2d(3),
                 nn.Conv2d(input_nc, ngf, kernel_size=7, padding=0, bias=use_bias),
                 norm_layer(ngf),
                 nn.ReLU(True)]

        n_downsampling = 2
        for i in range(n_downsampling):  # add downsampling layers
            mult = 2 ** i
            model += [nn.Conv2d(ngf * mult, ngf * mult * 2, kernel_size=3, stride=2, padding=1, bias=use_bias),
                      norm_layer(ngf * mult * 2),
                      nn.ReLU(True)]

        mult = 2 ** n_downsampling
        for i in range(n_blocks):       # add ResNet blocks

            model += [ResnetBlock(ngf * mult, padding_type=padding_type, norm_layer=norm_layer, use_dropout=use_dropout, use_bias=use_bias)]

        for i in range(n_downsampling):  # add upsampling layers
            mult = 2 ** (n_downsampling - i)
            model += [nn.ConvTranspose2d(ngf * mult, int(ngf * mult / 2),
                                         kernel_size=3, stride=2,
                                         padding=1, output_padding=1,
                                         bias=use_bias),
                      norm_layer(int(ngf * mult / 2)),
                      nn.ReLU(True)]
        model += [nn.ReflectionPad2d(3)]
        model += [nn.Conv2d(ngf, output_nc, kernel_size=7, padding=0)]
        model += [nn.Tanh()]

        self.model = nn.Sequential(*model)

    def forward(self, input):
        """Standard forward"""
        return self.model(input)


class ResnetBlock(nn.Module):
    """Define a Resnet block"""

    def __init__(self, dim, padding_type, norm_layer, use_dropout, use_bias):
        """Initialize the Resnet block
        A resnet block is a conv block with skip connections
        We construct a conv block with build_conv_block function,
        and implement skip connections in <forward> function.
        Original Resnet paper: https://arxiv.org/pdf/1512.03385.pdf
        """
        super(ResnetBlock, self).__init__()
        self.conv_block = self.build_conv_block(dim, padding_type, norm_layer, use_dropout, use_bias)

    def build_conv_block(self, dim, padding_type, norm_layer, use_dropout, use_bias):
        """Construct a convolutional block.
        Parameters:
            dim (int)           -- the number of channels in the conv layer.
            padding_type (str)  -- the name of padding layer: reflect | replicate | zero
            norm_layer          -- normalization layer
            use_dropout (bool)  -- if use dropout layers.
            use_bias (bool)     -- if the conv layer uses bias or not
        Returns a conv block (with a conv layer, a normalization layer, and a non-linearity layer (ReLU))
        """
        conv_block = []
        p = 0
        if padding_type == 'reflect':
            conv_block += [nn.ReflectionPad2d(1)]
        elif padding_type == 'replicate':
            conv_block += [nn.ReplicationPad2d(1)]
        elif padding_type == 'zero':
            p = 1
        else:
            raise NotImplementedError('padding [%s] is not implemented' % padding_type)

        conv_block += [nn.Conv2d(dim, dim, kernel_size=3, padding=p, bias=use_bias), norm_layer(dim), nn.ReLU(True)]
        if use_dropout:
            conv_block += [nn.Dropout(0.5)]

        p = 0
        if padding_type == 'reflect':
            conv_block += [nn.ReflectionPad2d(1)]
        elif padding_type == 'replicate':
            conv_block += [nn.ReplicationPad2d(1)]
        elif padding_type == 'zero':
            p = 1
        else:
            raise NotImplementedError('padding [%s] is not implemented' % padding_type)
        conv_block += [nn.Conv2d(dim, dim, kernel_size=3, padding=p, bias=use_bias), norm_layer(dim)]

        return nn.Sequential(*conv_block)

    def forward(self, x):
        """Forward function (with skip connections)"""
        out = x + self.conv_block(x)  # add skip connections
        return out

### discriminator
class NLayerDiscriminator(nn.Module):
    """Defines a PatchGAN discriminator"""
    def __init__(self, input_nc, ndf=64, n_layers=3, norm_layer=nn.BatchNorm2d):
        """Construct a PatchGAN discriminator
        Parameters:
            input_nc (int)  -- the number of channels in input images
            ndf (int)       -- the number of filters in the last conv layer
            n_layers (int)  -- the number of conv layers in the discriminator
            norm_layer      -- normalization layer
        """
        super(NLayerDiscriminator, self).__init__()
        if type(norm_layer) == functools.partial:  # no need to use bias as BatchNorm2d has affine parameters
            use_bias = norm_layer.func == nn.InstanceNorm2d
        else:
            use_bias = norm_layer == nn.InstanceNorm2d
        kw = 4
        padw = 1
        sequence = [nn.Conv2d(input_nc, ndf, kernel_size=kw, stride=2, padding=padw), nn.LeakyReLU(0.2, True)]
        nf_mult = 1
        nf_mult_prev = 1
        for n in range(1, n_layers):  # gradually increase the number of filters
            nf_mult_prev = nf_mult
            nf_mult = min(2 ** n, 8)
            sequence += [
                nn.Conv2d(ndf * nf_mult_prev, ndf * nf_mult, kernel_size=kw, stride=2, padding=padw, bias=use_bias),
                norm_layer(ndf * nf_mult),
                nn.LeakyReLU(0.2, True)
            ]
        nf_mult_prev = nf_mult
        nf_mult = min(2 ** n_layers, 8)
        sequence += [
            nn.Conv2d(ndf * nf_mult_prev, ndf * nf_mult, kernel_size=kw, stride=1, padding=padw, bias=use_bias),
            norm_layer(ndf * nf_mult),
            nn.LeakyReLU(0.2, True)
        ]
        sequence += [nn.Conv2d(ndf * nf_mult, 1, kernel_size=kw, stride=1, padding=padw)]  # output 1 channel prediction map
        self.model = nn.Sequential(*sequence)
    def forward(self, input):
        """Standard forward."""
        return self.model(input)