Spaces:
Running
on
Zero
Running
on
Zero
"""Implementation of the paper: | |
LLaMA-Adapter V2: Parameter-Efficient Visual Instruction Model | |
https://arxiv.org/abs/2304.15010 | |
Port for Lit-GPT | |
""" | |
from dataclasses import dataclass | |
from typing import Any, Dict, Optional, Tuple, Type | |
import torch | |
import torch.nn as nn | |
from typing_extensions import Self | |
import lit_gpt | |
from lit_gpt.adapter import GPT as BaseModel | |
from lit_gpt.adapter import Block as BaseBlock | |
from lit_gpt.adapter import CausalSelfAttention as BaseCausalSelfAttention | |
from lit_gpt.adapter import Config as BaseConfig | |
from lit_gpt.model import KVCache | |
from lit_gpt.utils import map_old_state_dict_weights | |
class Config(BaseConfig): | |
def mlp_class(self) -> Type: | |
return getattr(lit_gpt.adapter_v2, self._mlp_class) | |
def adapter_filter(key: str, value: Any) -> bool: | |
adapter_substrings = ( | |
# regular adapter v1 parameters | |
"adapter_wte", | |
"gating_factor", | |
# adapter v2: new bias and scale used in Linear | |
"adapter_scale", | |
"adapter_bias", | |
# adapter v2: Norm parameters are now trainable | |
"norm_1", | |
"norm_2", | |
"ln_f", | |
) | |
return any(s in key for s in adapter_substrings) | |
class AdapterV2Linear(torch.nn.Module): | |
def __init__(self, in_features: int, out_features: int, **kwargs) -> None: | |
super().__init__() | |
self.linear = torch.nn.Linear(in_features, out_features, **kwargs) | |
self.adapter_bias = torch.nn.Parameter(torch.zeros(out_features), requires_grad=False) | |
self.adapter_scale = torch.nn.Parameter(torch.ones(out_features), requires_grad=False) | |
def forward(self, x: torch.Tensor) -> torch.Tensor: | |
return self.adapter_scale * (self.linear(x) + self.adapter_bias) | |
def reset_parameters(self) -> None: | |
nn.init.zeros_(self.adapter_bias) | |
nn.init.ones_(self.adapter_scale) | |
class GPT(BaseModel): | |
def __init__(self, config: Config) -> None: | |
# Skip the parent class __init__ altogether and replace it to avoid useless allocations | |
nn.Module.__init__(self) | |
assert config.padded_vocab_size is not None | |
self.config = config | |
self.lm_head = AdapterV2Linear(config.n_embd, config.padded_vocab_size, bias=config.lm_head_bias) | |
self.transformer = nn.ModuleDict( | |
dict( | |
wte=nn.Embedding(config.padded_vocab_size, config.n_embd), | |
h=nn.ModuleList(Block(config, i) for i in range(config.n_layer)), | |
ln_f=config.norm_class(config.n_embd, eps=config.norm_eps), | |
) | |
) | |
self.max_seq_length = self.config.block_size | |
self.mask_cache: Optional[torch.Tensor] = None | |
def from_name(cls, name: str, **kwargs: Any) -> Self: | |
return cls(Config.from_name(name, **kwargs)) | |
def _init_weights(self, module: nn.Module) -> None: | |
"""Meant to be used with `gpt.apply(gpt._init_weights)`. Unused method left for completeness.""" | |
super()._init_weights(module) | |
if isinstance(module, AdapterV2Linear): | |
module.reset_parameters() | |
def _load_from_state_dict(self, state_dict: Dict, prefix: str, *args: Any, **kwargs: Any) -> None: | |
"""For compatibility with base checkpoints.""" | |
mapping = {"lm_head.weight": "lm_head.linear.weight"} | |
state_dict = map_old_state_dict_weights(state_dict, mapping, prefix) | |
super()._load_from_state_dict(state_dict, prefix, *args, **kwargs) | |
class Block(BaseBlock): | |
"""The implementation is identical to `lit_gpt.model.Block` with the exception that | |
we replace the attention layer where adaption is implemented.""" | |
def __init__(self, config: Config, block_idx: int) -> None: | |
# Skip the parent class __init__ altogether and replace it to avoid useless allocations | |
nn.Module.__init__(self) | |
self.norm_1 = config.norm_class(config.n_embd, eps=config.norm_eps) | |
self.attn = CausalSelfAttention(config, block_idx) | |
if not config.shared_attention_norm: | |
self.norm_2 = config.norm_class(config.n_embd, eps=config.norm_eps) | |
self.mlp = config.mlp_class(config) | |
self.config = config | |
class CausalSelfAttention(BaseCausalSelfAttention): | |
"""A modification of `lit_gpt.adapter.CausalSelfAttention` that uses the Adapter V2 Linear class""" | |
def __init__(self, config: Config, block_idx: int) -> None: | |
# Skip the parent class __init__ altogether and replace it to avoid useless allocations | |
nn.Module.__init__(self) | |
shape = (config.n_head + 2 * config.n_query_groups) * config.head_size | |
# key, query, value projections for all heads, but in a batch | |
self.attn = AdapterV2Linear(in_features=config.n_embd, out_features=shape, bias=config.bias) | |
# output projection | |
self.proj = AdapterV2Linear(config.n_embd, config.n_embd, bias=config.bias) | |
# disabled by default | |
self.kv_cache: Optional[KVCache] = None | |
if block_idx >= config.adapter_start_layer: | |
# adapter embedding layer | |
self.adapter_wte = nn.Embedding(config.adapter_prompt_length, config.n_embd) | |
# gate for adaption | |
self.gating_factor = torch.nn.Parameter(torch.zeros(1, 1, config.n_head, 1)) | |
# kv cache for inference | |
self.adapter_kv_cache: Optional[Tuple[torch.Tensor, torch.Tensor]] = None | |
self.block_idx = block_idx | |
self.config = config | |
def _load_from_state_dict(self, state_dict: Dict, prefix: str, *args: Any, **kwargs: Any) -> None: | |
"""For compatibility with base checkpoints.""" | |
mapping = { | |
"attn.weight": "attn.linear.weight", | |
"attn.bias": "attn.linear.bias", | |
"proj.weight": "proj.linear.weight", | |
"proj.bias": "proj.linear.bias", | |
} | |
state_dict = map_old_state_dict_weights(state_dict, mapping, prefix) | |
# For compatibility with older checkpoints | |
if (key := prefix + "gating_factor") in state_dict and state_dict[key].size(1) == self.config.n_head: | |
state_dict[key] = state_dict[key].permute(0, 2, 1, 3) | |
super()._load_from_state_dict(state_dict, prefix, *args, **kwargs) | |
class GptNeoxMLP(lit_gpt.model.GptNeoxMLP): | |
def __init__(self, config: Config) -> None: | |
nn.Module.__init__(self) | |
self.fc = AdapterV2Linear(config.n_embd, config.intermediate_size, bias=config.bias) | |
self.proj = AdapterV2Linear(config.intermediate_size, config.n_embd, bias=config.bias) | |
self.config = config | |
def _load_from_state_dict(self, state_dict: Dict, prefix: str, *args: Any, **kwargs: Any) -> None: | |
"""For compatibility with base checkpoints.""" | |
mapping = { | |
"fc.weight": "fc.linear.weight", | |
"fc.bias": "fc.linear.bias", | |
"proj.weight": "proj.linear.weight", | |
"proj.bias": "proj.linear.bias", | |
} | |
state_dict = map_old_state_dict_weights(state_dict, mapping, prefix) | |
super()._load_from_state_dict(state_dict, prefix, *args, **kwargs) | |
class LLaMAMLP(lit_gpt.model.LLaMAMLP): | |
def __init__(self, config: Config) -> None: | |
nn.Module.__init__(self) | |
self.fc_1 = AdapterV2Linear(config.n_embd, config.intermediate_size, bias=config.bias) | |
self.fc_2 = AdapterV2Linear(config.n_embd, config.intermediate_size, bias=config.bias) | |
self.proj = AdapterV2Linear(config.intermediate_size, config.n_embd, bias=config.bias) | |
def _load_from_state_dict(self, state_dict: Dict, prefix: str, *args: Any, **kwargs: Any) -> None: | |
"""For compatibility with base checkpoints.""" | |
mapping = { | |
"fc_1.weight": "fc_1.linear.weight", | |
"fc_1.bias": "fc_1.linear.bias", | |
"fc_2.weight": "fc_2.linear.weight", | |
"fc_2.bias": "fc_2.linear.bias", | |
"proj.weight": "proj.linear.weight", | |
"proj.bias": "proj.linear.bias", | |
} | |
state_dict = map_old_state_dict_weights(state_dict, mapping, prefix) | |
super()._load_from_state_dict(state_dict, prefix, *args, **kwargs) | |
def mark_only_adapter_v2_as_trainable(model: GPT) -> None: | |
"""Sets requires_grad=False for all non-adapter weights""" | |
for name, param in model.named_parameters(): | |
param.requires_grad = adapter_filter(name, param) | |